fixup split in aligned and reference fock space normalization

This commit is contained in:
Valentin Boettcher 2022-06-21 10:59:18 +02:00
parent 734e19151e
commit 25c503d28f

View file

@ -1,3 +1,4 @@
\chapter{Calculating Bath Obeservables with HOPS}
\section{Linear NMQSD, Zero Temperature}
As in~\cite{Hartmann2017Dec} we choose
\begin{equation}
@ -152,8 +153,8 @@ hierarchy and \(\bar{g}_\mu\) is an arbitrary scaling introduced in
the definition of the hierarchy in~\cite{Hartmann2021Aug} to help with
the scaling of the norm.
With the new ``fock-space'' normalization however the expression
becomes
With the new ``fock-space'' normalization (see \cref{eq:dops_full})
however the expression becomes
\begin{equation}
\label{eq:hopsflowfock}
J(t) = - ∑_\mu\sqrt{G_\mu}W_\mu
@ -161,9 +162,6 @@ becomes
t)}L^\ket{\psi^{\vb{e}_\mu}^\ast,t)} + \cc.
\end{equation}
\section{Nonlinear NMQSD, Zero Temperature}
\label{sec:nonlin}
In the spirit of the usual derivation of the nonlinear NMQSD we write
@ -300,12 +298,12 @@ Remember that we want to calculate
\begin{aligned}
\ev{L^\dot{B}(t)} &= \tr[L^†\dot{B}(t)\rho(t)] \\
&=
\begin{split}
\begin{aligned}
\prod_\lambda&\qty(∫\dd[2]{y_\lambda}
\frac{\eu^{-\abs{y_\lambda}^2\bar{n}_\lambda}}{\pi\bar{n}_\lambda})\\
&\tr[L^\dot{B}(t)
U(t)\vb{D}(y)\ketbra{\psi}\otimes\ketbra{0}\vb{D}(y)^† U(t)^†].
\end{split}
\end{aligned}
\end{aligned}
\end{equation}
To recover the zero temperature formulation of this expectation value we
@ -317,11 +315,11 @@ again insert a \(\id\), but have to commute \(\vb{D}(y)^†\) past
\ev{L^\dot{B}(t)} &=\prod_\lambda\qty(∫\dd[2]{y_\lambda}
\frac{\eu^{-\abs{y_\lambda}^2\bar{n}_\lambda}}{\pi\bar{n}_\lambda})\\
&\qquad\times\tr[
\begin{split}
\begin{aligned}
L^†(\dot{B}(t) + \dot{ξ}(t))
\vb{D}^†(y) &U(t)\vb{D}(y)\ketbra{\psi}\\
&\otimes\ketbra{0}\vb{D}^†(y)U(t)^\vb{D}(y)
\end{split}
\end{aligned}
] \\
&=\prod_\lambda
\qty(∫\dd[2]{y_\lambda}