mirror of
https://github.com/vale981/master-thesis-tex
synced 2025-03-05 09:31:39 -05:00
fixup split in aligned and reference fock space normalization
This commit is contained in:
parent
734e19151e
commit
25c503d28f
1 changed files with 7 additions and 9 deletions
16
src/ugly.tex
16
src/ugly.tex
|
@ -1,3 +1,4 @@
|
|||
\chapter{Calculating Bath Obeservables with HOPS}
|
||||
\section{Linear NMQSD, Zero Temperature}
|
||||
As in~\cite{Hartmann2017Dec} we choose
|
||||
\begin{equation}
|
||||
|
@ -152,8 +153,8 @@ hierarchy and \(\bar{g}_\mu\) is an arbitrary scaling introduced in
|
|||
the definition of the hierarchy in~\cite{Hartmann2021Aug} to help with
|
||||
the scaling of the norm.
|
||||
|
||||
With the new ``fock-space'' normalization however the expression
|
||||
becomes
|
||||
With the new ``fock-space'' normalization (see \cref{eq:dops_full})
|
||||
however the expression becomes
|
||||
\begin{equation}
|
||||
\label{eq:hopsflowfock}
|
||||
J(t) = - ∑_\mu\sqrt{G_\mu}W_\mu
|
||||
|
@ -161,9 +162,6 @@ becomes
|
|||
t)}L^†\ket{\psi^{\vb{e}_\mu}(η^\ast,t)} + \cc.
|
||||
\end{equation}
|
||||
|
||||
|
||||
|
||||
|
||||
\section{Nonlinear NMQSD, Zero Temperature}
|
||||
\label{sec:nonlin}
|
||||
In the spirit of the usual derivation of the nonlinear NMQSD we write
|
||||
|
@ -300,12 +298,12 @@ Remember that we want to calculate
|
|||
\begin{aligned}
|
||||
\ev{L^†\dot{B}(t)} &= \tr[L^†\dot{B}(t)\rho(t)] \\
|
||||
&=
|
||||
\begin{split}
|
||||
\begin{aligned}
|
||||
\prod_\lambda&\qty(∫\dd[2]{y_\lambda}
|
||||
\frac{\eu^{-\abs{y_\lambda}^2\bar{n}_\lambda}}{\pi\bar{n}_\lambda})\\
|
||||
&\tr[L^†\dot{B}(t)
|
||||
U(t)\vb{D}(y)\ketbra{\psi}\otimes\ketbra{0}\vb{D}(y)^† U(t)^†].
|
||||
\end{split}
|
||||
\end{aligned}
|
||||
\end{aligned}
|
||||
\end{equation}
|
||||
To recover the zero temperature formulation of this expectation value we
|
||||
|
@ -317,11 +315,11 @@ again insert a \(\id\), but have to commute \(\vb{D}(y)^†\) past
|
|||
\ev{L^†\dot{B}(t)} &=\prod_\lambda\qty(∫\dd[2]{y_\lambda}
|
||||
\frac{\eu^{-\abs{y_\lambda}^2\bar{n}_\lambda}}{\pi\bar{n}_\lambda})\\
|
||||
&\qquad\times\tr[
|
||||
\begin{split}
|
||||
\begin{aligned}
|
||||
L^†(\dot{B}(t) + \dot{ξ}(t))
|
||||
\vb{D}^†(y) &U(t)\vb{D}(y)\ketbra{\psi}\\
|
||||
&\otimes\ketbra{0}\vb{D}^†(y)U(t)^†\vb{D}(y)
|
||||
\end{split}
|
||||
\end{aligned}
|
||||
] \\
|
||||
&=\prod_\lambda
|
||||
\qty(∫\dd[2]{y_\lambda}
|
||||
|
|
Loading…
Add table
Reference in a new issue