flesh out the nmqsd intro a little

This commit is contained in:
Valentin Boettcher 2022-09-06 11:20:20 +02:00
parent 754d50298d
commit 16b32a3f2c

View file

@ -226,16 +226,38 @@ coherent state basis~\cite{klauder1968fundamentals} with respect to
the bath degrees of freedom
\begin{equation}
\label{eq:projected_single}
\ket{ψ(t)} = ∫{\frac{\dd{\vb{z}}}{π^{N}}\eu^{-\abs{\vb{z}}^2}}\ket{ψ(t,\vb{z})^\ast}\ket{\vb{z}},
\ket{ψ(t)} = ∫{\frac{\dd{\vb{z}}}{π^{N}}\eu^{-\abs{\vb{z}}^2}}\ket{ψ(t,\vb{z}^\ast)}\ket{\vb{z}},
\end{equation}
where \(\vb{z}\) is a vector of coherent state labels \(z_λ\) for each
environment oscillator.
environment oscillator. The \(\ket{ψ(t,\vb{z})^{\ast}}\) are
holomorphic functions of \(\vb{z}^\ast\).
After transforming \cref{eq:generalmodel} into the interaction picture
with respect to \(H_B\) and using the properties of the coherent
states (\(\mel{z_λ}{a_λ}{ψ}\rightarrow_{z_λ^\ast}\braket{z_λ}{ψ}\),
\(\mel{z_λ}{a_λ^\dag}{ψ}\rightarrow z_λ^\ast\braket{z_λ}{ψ}\)) we
arrive at an equation for stochastic pure state trajectories
arrive at an equation for \(\ket{ψ(t,\vb{z}^{\ast})}\)
\begin{equation}
\label{eq:nmqsd_single_proto}
_t\ket{ψ(t,\vb{z}^{\ast})} = -\iu H \ket{ψ(t,\vb{z}^{\ast})} - \iu
L ∑_{λ}g_{λ}^\ast z_{λ}^\ast \eu^{\iu ω_{λ} t}
\ket{ψ(t,\vb{z}^{\ast})} - \iu L^\dag_{λ} g_{λ}\eu^{-\iu ω_{λ} t}\pdv{}{z_{λ}^\ast}\ket{ψ(t,\vb{z}^{\ast})}.
\end{equation}
From this point on there are multiple avenues to continue. We choose
the simplest one, but there is also a time-discrete derivation that
avoids functional derivatives in~\cite{Hartmann2017Dec}.
We shift the perspective and define
\begin{equation}
\label{eq:single_process}
η^\ast_{t} = -\iu_λg_λ^{\ast} z_λ^{\ast}\eu^{\iu ω_λ t},
\end{equation}
using
\(\pdv{z_λ^{\ast}}=\dd{s}\pdv{η^\ast_{s}}{z_λ^{\ast}}\fdv{η^\ast_{s}}\)
and interpreting \(\ket{ψ(t,\vb{z}^{\ast})}\) as a functional of
\(η_{t}^\ast\) we arrive at
\begin{equation}
\label{eq:nmqsd_single}\tag{NMQSD}
__t(η^\ast_t) = -\iu H ψ_t(η^\ast_t) +
@ -244,7 +266,7 @@ arrive at an equation for stochastic pure state trajectories
where \(α\) is the zero temperature bath correlation function (BCF)
\begin{equation}
\label{eq:bcfdef}
α(t-s) = \ev{B(t)B(s)} = ∑_λ \abs{g_λ}^2\,\eu^{-\iu ω_λ (t-s)}
α(t-s) = \ev{B(t)B(s)} = ∑_λ \abs{g_λ}^2\eu^{-\iu ω_λ (t-s)}
\end{equation}
and \(η_t\) is a Gaussian stochastic process obeying
\begin{equation}
@ -255,11 +277,12 @@ and \(η_t\) is a Gaussian stochastic process obeying
\end{aligned}
\end{equation}
The reduced system state may then be recovered by averaging over all
trajectories
The statistics of the process follow from interpreting
\cref{eq:projected_single} in a Monte-Carlo sense and thus reduced
system state may then be recovered by averaging over all trajectories
\begin{equation}
\label{eq:recover_rho}
ρ_{\sys}(t) = \mathcal{M}_{η_{t}^\ast}\bqty{ψ_t(η_t)^\dag ψ_t(η^\ast_t)}.
ρ_{\sys}(t) = \tr_{\bath}\bqty{\ketbra{ψ(t)}} = \mathcal{M}_{η_{t}^\ast}\bqty{ψ_t(η_t)^\dag ψ_t(η^\ast_t)}.
\end{equation}
Note that the BCF \(α\) is usually defined as Fourier transform of the
@ -290,7 +313,10 @@ To remedy this, we choose a co-moving shifted stochastic process
\end{equation}
where
\(\ev{L^\dag}_{t}=ψ(\tilde{η}_{t}^\ast)_{t}^\dag L^\dag
ψ(\tilde{η}_{t}^\ast)_{t}\).
ψ(\tilde{η}_{t}^\ast)_{t}\). The origin of this shift lies in the
study of the Husimi \(Q\) function of the bath
\(Q_{t}(\vb{z}, \vb{z}^\ast) = \eu^{-\abs{z}^{2}} π^{-N}
\braket{ψ(t,\vb{z})}{ψ(t,\vb{z}^\ast)}\).
This leads to the nonlinear NMQSD equation
\begin{equation}
@ -307,7 +333,6 @@ Crucially, the system state is now recovered through
\end{equation}
so that all trajectories contribute with ``equal weight''.
\section{The Hierarchy of Pure States}
\label{sec:hops_basics}
The equation \cref{eq:nmqsd_single} has removed the bath degrees of