master-thesis-tex/poster/nmqsd_hops_theory.tex

79 lines
3.6 KiB
TeX
Raw Normal View History

2022-07-11 11:34:50 +02:00
\begin{block}{NMQSD/HOPS}
Consider the model of a general quantum system (\(H_\sys(t)\))
coupled to \(N\) baths
\begin{equation}
\label{eq:generalmodel}
H(t) = H_\sys(t) + ∑_{n=1}^N \qty[L_n^†(t)B_n + \hc] + ∑_{n=1}^NH_B\nth ,
\end{equation}
with \(B_n=_{λ} g_λ\nth a_λ\nth\) and
\(H_B\nth=_λω_λ\nth \qty(b_λ\nth)^\dag b_λ\nth\). Projecting
onto coherent bath states
\begin{equation}
\label{eq:projected}
\ket{ψ(t)} = ∫∏_{n=1}^N{\qty(\frac{\dd{\vb{z}\nth}}{π^{N_n}}\eu^{-\abs{\vb{z}}^2})}\ket{ψ(t,\underline{\vb{z}}^\ast)}\ket{\underline{\vb{z}}}
\end{equation}
leads to \emph{stochastic} Non-Markovian
Quantum State Diffusion (NMQSD)
\begin{equation}
\label{eq:nmqsd}
__t(\vb{η}^\ast_t) = -\iu H(t) ψ_t(\vb{η}^\ast_t) +
\vb{L}\cdot \vb{η}^\ast__t(\vb{η}^\ast_t) - ∑_{n=1}^N L(t)_n^†∫_0^t\dd{s}α_n(t-s)\fdv{ψ_t(\vb{η}^\ast_t)}{η^\ast_n(s)},
\end{equation}
where the
\(α_n(τ) = \ev{B_n(t) B_n(0)} =_λ\abs{g_λ}^2 \eu^{-\iu ω_λ t}\)
{\tiny (interaction picture)} are the bath correlation functions (BCF)
and the \(η_n=(\vb{η})_n\) are complex valued Gaussian processes
with \(\mathcal{M}(η_n(t))=\mathcal{M}(η_n(t)η_n(s))=0\) and
\(\mathcal{M}(η_n(t)η_n^\ast(s))=α_n(t-s)\). The reduced state of
the system is recovered through
\(ρ=\mathcal{M}(ψ_t(\vb{η}^\ast_t)ψ_t^\dag(\vb{η}^\ast_t))\).
With \(α_n(τ)=_{\mu}^{M_n}G_μ\nth\eu^{-W_μ\nth τ}\) we define
\begin{align}
\label{eq:dop}
D_μ\nth(t) &\equiv_0^t\dd{s}G_μ\nth\eu^{-W_μ\nth
(t-s)}\fdv{η^\ast_n(s)} &
D^{\underline{\vb{k}}} &\equiv
_{n=1}^N∏_{μ=1}^{M_n}
{\sqrt{\frac{\underline{\vb{k}}_{n,μ}!}{\qty(G\nth_μ)^{\underline{\vb{k}}_{n,μ}}}}
\frac{1}{\iu^{\underline{\vb{k}}_{n,μ}}}}\qty(D_μ\nth)^{\underline{\vb{k}}_{n,μ}}\\
ψ^{\underline{\vb{k}}} &\equiv D^{\underline{\vb{k}}}ψ \equiv \braket{\kmat}{Ψ}.
\end{align}
For the Fock-space embedded hierarchy state \(\ket{Ψ}\) we find
\begin{equation}
\label{eq:fockhops}
\begin{aligned}
_t\ket{Ψ} &= \qty[
\begin{aligned}
-\iu H_\sys + \vb{L}\cdot\vb{η}^\ast &-
_{n=1}^N∑_{μ=1}^{M_n}b_{n,μ}^\dag b_{n,μ} W\nth_μ \\
&\qquad+
\iu_{n=1}^N∑_{μ=1}^{M_n} \sqrt{G_{n,μ}} \qty(b^_{n,μ}L_n +
b_{n,μ}L^_n)
\end{aligned}
] \ket{Ψ}.
\end{aligned}
\end{equation}
Truncating the hierarchy depth \(\kmat\) in \cref{eq:fockhops}
yields the numeric method.
Finite temperature can be dealt with through substituting
\(B(t)\rightarrow B(t)+ξ(t)\) with
\begin{equation}
\label{eq:thermproc}
\begin{aligned}
\mathcal{M}(ξ(t))&=0=\mathcal{M}(ξ(t) ξ(s)) \\
\mathcal{M}\left(ξ(t) ξ^{*}(s)\right)&=\frac{1}{\pi}_{0}^{}
\dd{ω} \bar{n}(\beta ω) J(ω) e^{-{\iu} ω(t-s)} \\
J(ω)&\sum_λ\abs{g_λ}^2δ(w-ω_λ).
\end{aligned}
\end{equation}
See~\cite{Hartmann2017Dec} for details about finite temperatures
and the nonlinear method.
\end{block}
%%% Local Variables:
%%% mode: latex
%%% TeX-master: ""
%%% End: