mirror of
https://github.com/vale981/fpraktikum
synced 2025-03-05 17:41:39 -05:00
193 lines
19 KiB
Text
193 lines
19 KiB
Text
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 11,
|
|
"metadata": {
|
|
"autoscroll": false,
|
|
"collapsed": false,
|
|
"ein.hycell": false,
|
|
"ein.tags": "worksheet-0",
|
|
"slideshow": {
|
|
"slide_type": "-"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"import matplotlib.pyplot as plt\n",
|
|
"import numpy as np\n",
|
|
"from SecondaryValue import SecondaryValue\n",
|
|
"from fillplots import plot_regions"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 2,
|
|
"metadata": {
|
|
"autoscroll": false,
|
|
"collapsed": false,
|
|
"ein.hycell": false,
|
|
"ein.tags": "worksheet-0",
|
|
"slideshow": {
|
|
"slide_type": "-"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"L = 500 # mm\n",
|
|
"R = 1000 # mm"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 6,
|
|
"metadata": {
|
|
"autoscroll": false,
|
|
"collapsed": false,
|
|
"ein.hycell": false,
|
|
"ein.tags": "worksheet-0",
|
|
"slideshow": {
|
|
"slide_type": "-"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"g = SecondaryValue('1 - L/R', defaults=dict(R=R))"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 9,
|
|
"metadata": {
|
|
"autoscroll": false,
|
|
"collapsed": false,
|
|
"ein.hycell": false,
|
|
"ein.tags": "worksheet-0",
|
|
"slideshow": {
|
|
"slide_type": "-"
|
|
}
|
|
},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"0.5"
|
|
]
|
|
},
|
|
"execution_count": 9,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"g(L=L)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 72,
|
|
"metadata": {
|
|
"autoscroll": false,
|
|
"collapsed": false,
|
|
"ein.hycell": false,
|
|
"ein.tags": "worksheet-0",
|
|
"slideshow": {
|
|
"slide_type": "-"
|
|
}
|
|
},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"image/png": [
|
|
"iVBORw0KGgoAAAANSUhEUgAAAZUAAAEMCAYAAAAMMiuwAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3deZSU5Zn38e9Fr/TC3qDYCDguUTbRBtwOgaiIJi4xkxOJE6PoIWZMJuZNco7OeaNZzMSZOE7GqEOI6eMYAU3cwiSohAl53WUXkEUQWZq9u+l9rarr/aOKtmi6oaBr6+7f55w6XfU891N1UTzw6/tZ7tvcHRERkXjok+oCRESk51CoiIhI3ChUREQkbhQqIiISNwoVERGJG4WKiIjETcJDxcxGmNkyM9tkZh+a2Xc6aGNm9piZbTOzdWZ2UdS6mWa2JbLuvkTXKyIipy4ZPZUA8D13Px+4BLjHzC5o1+Za4JzIYw7wXwBmlgE8EVl/ATCrg21FRCRNJDxU3H2fu6+OPK8FNgFntGt2I/CMh70HDDCz04HJwDZ33+7uLcBzkbYiIpKGMpP5YWY2CpgIvN9u1RnA7qjXZZFlHS2f0sl7zyHcyyE/P//iz3zmM12qta45QEijDZy0vOxMMvtYqssQkZO0atWqcncv6ur7JC1UzKwAeBG4191r2q/uYBM/zvJjF7rPA+YBlJSU+MqVK7tQLby59RDNraEuvUdvNKxfLuOK+6e6DBE5SWa2Mx7vk5RQMbMswoEy391f6qBJGTAi6nUxsBfI7mS5pKlDdU20BgvJytCFhSK9UTKu/jLgt8Amd3+0k2aLgNsiV4FdAlS7+z5gBXCOmY02s2zglkhbSVOhEByoaUp1GSKSIsnoqVwOfA1Yb2ZrI8v+GTgTwN3nAouB64BtQANwR2RdwMy+BbwOZACl7v5hEmqWLthb1UTxwLxUlyEiKZDwUHH3t+j43Eh0Gwfu6WTdYsKhI91ETWMrdc0BCnKSeh2IxKi1tZWysjKamtSj7I1yc3MpLi4mKysrIe+vf/WSEHurGjl3WGGqy5AOlJWVUVhYyKhRowgfnZbewt2pqKigrKyM0aNHJ+QzdDZVEmJfdROhkC7JTkdNTU0MHjxYgdILmRmDBw9OaC9VoSIJ0RoIcaiuOdVlSCcUKL1Xov/uFSqSMGWHG1NdgogkmUJFEuZwfQsNLYFUlyEiSaRQkYTao96KSK+iUJGE2qsT9tIFjz32GOeffz633npr3N/717/+Nffc0+GdDCetsbGRz372swSDQV577TXOO+88zj77bB5++OETbjt79myGDh3K2LFj25a1tLQwdepUAoHu19NXqEhCtQZCHKjV/RByap588kkWL17M/Pnzu/Q+7k4odPRYfuvWrWPcuHHH3e6pp55i0qRJlJSUtD1uuOGGY9qVlpZy8803A3DPPffw6quvsnHjRhYuXMjGjRuP+xm33347r7322lHLsrOzufLKK3n++edj+eOlFd2nIgm3u7KR0/v3TXUZ0t6CJFwB9tXOe6k//elPmT9/PiNGjGDIkCFcfPHFfP/7329bf/fdd7N9+3ZuuOEGZs+ezRe/+EW+8IUvsGHDBgAeeeQR6urq+NGPfsSzzz7LY489RktLC1OmTOHJJ59k9+7dXHvttUyfPp13332XV155hZEjR7a9//r16/nqV7/aaX3//u//zvr16/nrX/9KYeHx77maP38+CxYsYPny5Zx99tmcddZZANxyyy388Y9/5IILOp8GaurUqezYseOY5TfddBP3338/t956Kzt27GDmzJlcccUVvPfee0yYMIE77riDBx98kIMHDzJ//nwmT5583BqTRT0VSbiaxlaqG1tTXYakkZUrV/Liiy+yZs0aXnrpJToaVXzu3LkMHz6cZcuW8d3vfrfT99q0aRPPP/88b7/9NmvXriUjI6OtZ7NlyxZuu+021qxZc1SgAGzYsOGoQ07RgsEgCxYs4Le//e0JA6WlpYXt27czatQo9uzZw4gRn46BW1xczJ49e467fWfGjh3LihUr2l5v27aN73znO6xbt47NmzezYMEC3nrrLR555BH+5V/+5ZQ+IxHUU5Gk2F3ZQP8zNCS+hL311lvceOON9O0b7sFef/31p/xe//u//8uqVauYNGkSED6/MXToUKZOncrIkSO55JJLjtlm9+7dFBYW0r9/x/vkoUOH2LZtGxdffPEx64YPH87ixZ+OHFVeXs6AAQOA8GG29k71vpCMjAyys7Opra0FYPTo0W2H68aMGcOVV16JmTFu3LgOezqpolCRpDhY20RzoICczIxUlyJpoKP/fE8kMzPzqPMiR+4Kd3e+/vWv8/Of//yo9jt27CA/P7/D9zrR+ZSioiJGjx7NqlWryMg4/j7bt2/ftlqKi4vZvfvTeQXLysoYPnz48f9gx9Hc3Exubi4AOTk5bcv79OnT9rpPnz5pdUJfh78kKUIhXV4sn7riiiv4n//5H5qamqirq+PPf/7zCbcZNmwYBw8epKKigubmZv70pz8BcOWVV/LCCy9w8OBBACorK9m58/jzTa1fv/64oZKRkcHXvvY17rrrrraeQmcGDhxIMBikqamJSZMmsXXrVj755BNaWlp47rnnjjqxf+WVV8Z8OKyiooKioqKEDfyYKOqpSNKUHW5k1OB8+mi64fRwnJPoiTZp0iRuuOEGJkyYwMiRIykpKen0UNQRWVlZPPDAA0yZMoXRo0dzZMrwCy64gIceeogZM2YQCoXIysriiSee4LTTTuv0vdavX89rr73GwoULATj99NN59913j2rzve99j9/85jd87nOfO6pnNXz4cBYtOnpapxkzZvDWW29x1VVX8fjjj3PNNdcQDAaZPXs2Y8aMASAUCrFt2zYGDRp01LazZs3ib3/7G+Xl5RQXF/PjH/+YO++8k2XLlnHddded4JtMP3Yq3dB0p+mE09cFw/sxfICuBEulTZs2cf7556e6DOrq6igoKKChoYGpU6cyb948LrroolSXdUrWrFnDo48+yu9+97tO22zYsIHS0lIefbSzuQqPdvPNN/Pzn/+c8847L15ltuloHzCzVe5e0tX3Vk9FkmpXZYNCRQCYM2cOGzdupKmpia9//evdNlAAJk6cyPTp0wkGg52egxk7dmzMgdLS0sJNN92UkEBJNIWKJFVdU4CKumYGF+ScuLH0aAsWLEh1CXE1e/bsuL1XdnY2t912W9zeL5l0ol6SbmdlQ6pLEJEESXiomFmpmR00sw2drP+Bma2NPDaYWdDMBkXW7TCz9ZF1XTtJImmjsq6FmibdDCnSEyWjp/I0MLOzle7+C3e/0N0vBO4H/p+7V0Y1mR5Z3+UTSJI+dpartyLSEyU8VNz9DaDyhA3DZgELE1iOpImDtU2aa0WkB0qbcypmlke4R/Ni1GIHlpjZKjObk5rKJBHcYYd6KyI9TtqECnA98Ha7Q1+Xu/tFwLXAPWY2tbONzWyOma00s5WHDh1KdK0SB/trGmlqDaa6DBGJo3QKlVtod+jL3fdGfh4EXgY6HdvZ3ee5e4m7lxQVFSW0UImPUAh2Vqi3kmpLNx6I6yMWP/vZzxgzZgzjx4/nwgsv5P333+eXv/wlDQ0n3h9GjRpFeXn5Mcvnzp3LM888A4TnKHnhhRcAuOuuu9rmNOnqaL6x1Dht2rQOR12Oh8suuyxlnx2rtAgVM+sPfBb4Y9SyfDMrPPIcmAF0eAWZdF97qhrUW+ll3n33Xf70pz+xevVq1q1bx9KlSxkxYkTModKZu+++u8N7O5566qm2+UySESpdcaKBId95552EfXa8JOOS4oXAu8B5ZlZmZnea2d1mdndUsy8CS9y9PmrZMOAtM/sAWA782d2Pnh5Nur1QKHyXvfQe+/btY8iQIW2j7A4ZMoQXXniBvXv3Mn36dKZPnw7AN7/5TUpKShgzZgwPPvjgUe/xi1/8gsmTJzN58mS2bdsGwI9+9CMeeeSRYz7vyG/v9913H42NjVx44YVt0xPfdNNNXHzxxYwZM4Z58+a1bbNkyRIuvfRSLrroIr785S9TV1fHY489dlSNwWCQ22+/nbFjxzJu3Dj+4z/+o237Z599lssuu4yxY8eyfPlyAOrr65k9ezaTJk1i4sSJ/PGP4d+hn376ab785S9z/fXXM2PGjLY/36RJkxg/fvxRf/aCgoK25//2b//GuHHjmDBhAvfdd1/b8j/84Q9MnjyZc889lzfffPNk/3q6LOF31Lv7rBjaPE340uPoZduBCYmpStJJ2eEGzhyUR26WhsXvDWbMmMFPfvITzj33XK666iq+8pWv8E//9E88+uijLFu2jCFDhgDhQ2SDBg0iGAxy5ZVXsm7dOsaPHw9Av379WL58Oc888wz33ntv24jFx/Pwww/z+OOPs3bt2rZlpaWlDBo0iMbGRiZNmsSXvvQl3J2HHnqIpUuXkp+fz7/+67/y6KOP8sADDxxV46pVq9izZ0/bTJRVVVVt71tfX88777zDG2+8wezZs9mwYQM/+9nP+NznPkdpaSlVVVVMnjyZq666Cgj33tatW8egQYNYsmQJW7duZfny5bg7N9xwA2+88QZTp356SvnVV1/llVde4f333ycvL4/Kyk9PRQcCAZYvX87ixYv58Y9/zNKlS7vwt3XyNEyLpNyRcyvnnXb8GfakZygoKGDVqlW8+eabLFu2jK985Ss8/PDDx7T7/e9/z7x58wgEAuzbt4+NGze2hcqsWbPafh5vVsgTeeyxx3j55ZeB8MRdW7dupby8nI0bN3L55ZcD4XG4Lr300mO2Peuss9i+fTvf/va3+fznP9/Wy4iub+rUqdTU1FBVVcWSJUtYtGhRW2+qqamJXbt2AXD11Ve3jV68ZMkSlixZwsSJE4HwwJtbt249KlSWLl3KHXfcQV5eHsBRIx/ffPPNAFx88cUpmbxLoSJpYU9VAyMHq7fSW2RkZDBt2jSmTZvGuHHj+O///u+j1n/yySc88sgjrFixgoEDB3L77be3TYQFR8+meKozK/7tb39j6dKlvPvuu+Tl5TFt2jSamppwd66++uq2YfE7M3DgQD744ANef/11nnjiCX7/+99TWlraYU1mhrvz4osvHjNI5Pvvv3/UZGLuzv333883vvGNTj/b3Tv9cx85rJiRkZGSybvS4kS9SCgE2w/Vn7ihdHtbtmxh69atba/Xrl3LyJEjKSwsbJsQq6amhvz8fPr378+BAwd49dVXj3qP559/vu1nR72IzmRlZdHaGh4iqLq6moEDB5KXl8fmzZt57733ALjkkkt4++23287VNDQ08NFHHwEcVWN5eTmhUIgvfelL/PSnP2X16tXH1PfWW2/Rv39/+vfvzzXXXMOvfvWrtrlZ1qxZ02GN11xzDaWlpdTV1QGwZ8+etgnIjpgxYwalpaVtFw1EH/5KNfVUJG3sq25k1JA88rK1WybTVRcMS+rn1dXV8e1vf5uqqioyMzM5++yzmTdvHgsXLuTaa6/l9NNPZ9myZUycOJExY8Zw1llntR2KOqK5uZkpU6YQCoVO2KOINmfOHMaPH89FF11EaWkpc+fOZfz48Zx33nltc9kXFRXx9NNPM2vWLJqbmwF46KGHOPfcc5kzZ05bjb/85S+544472qY4jp7OeODAgVx22WXU1NS09V5++MMfcu+99zJ+/HjcnVGjRnV4LmjGjBls2rSpLSwLCgp49tlnGTp0aFubmTNnsnbtWkpKSsjOzua6667r8pVt8aJJujqhSbpSY1i/XMYVH38GQOmadJmkS1InkZN06fCXpJUDNU0awVikG1OoSNrZeqAu1SWIyClSqEjaOVzfQnldc6rL6NF64mFviU2i/+4VKpKWth6o0398CZKbm0tFRYW+317I3amoqCA3Nzdhn6HLbCQt1TcH2FPVSPHAvFSX0uMUFxdTVlaGRvPunXJzcykuLk7Y+ytUJG19fKieYf1yycpQhzqesrKyGD16dKrLkB5K/1olbbUGQuwo1w2RIt2JQkXS2u7DDZp2WKQbUahIWguFYMv+2lSXISIxUqhI2quoa+FQrS4xFukOFCrSLXx0oJZgSJfAiqQ7hYp0C40tQXZU6KS9SLpTqEi3sbOinvpmnbQXSWcKFek2QiHYvL8m1WWIyHEkPFTMrNTMDprZhk7WTzOzajNbG3k8ELVuppltMbNtZnZfomuV9He4vpW9VY2pLkNEOpGMnsrTwMwTtHnT3S+MPH4CYGYZwBPAtcAFwCwzuyChlUq38NGBWpoDwVSXISIdSHiouPsbwKnMdTkZ2Obu2929BXgOuDGuxUm3FAg6H+3X8Pgi6ShdzqlcamYfmNmrZjYmsuwMYHdUm7LIsg6Z2RwzW2lmKzVQXs93oKaJgzVNqS5DRNpJh1BZDYx09wnAr4BXIsutg7ad3qjg7vPcvcTdS4qKihJQpqSbzftraQloymeRdJLyUHH3GnevizxfDGSZ2RDCPZMRUU2Lgb0pKFHSVEsgxEcHNISLSDpJeaiY2WlmZpHnkwnXVAGsAM4xs9Fmlg3cAixKXaWSjvZXN3FAh8FE0kbC51Mxs4XANGCImZUBDwJZAO4+F/h74JtmFgAagVs8PCVdwMy+BbwOZACl7v5houuV7mfz/lr6980iNysj1aWI9HoJDxV3n3WC9Y8Dj3eybjGwOBF1Sc/RGgixaV8NE88cmOpSRHq9lB/+EomHiroWdlc2pLoMkV5PoSI9xtaDtdRpbDCRlFKoSI8RCsH6smoNkS+SQgoV6VHqmwNsPajLjEVSRaEiPU5ZZaMuMxZJEYWK9Egb99XQ0KLzKyLJplCRHikYdNbp/IpI0ilUpMeqawpoUi+RJFOoSI+2r6qJssO6f0UkWRQq0uN9dKCW6obWVJch0isoVKTHC4Vg3Z4qmlo1W6RIoilUpFdobg2xrqyakE7ciySUQkV6jZrGVjbu04l7kURSqEivsr+6iU/K61NdhkiPpVCRXufjg3W6414kQRQq0it9uLeaqoaWVJch0uMoVKRXCoXgg7JqDeUiEmcKFem1WgMh1uyqojmgS41F4iXhoWJmpWZ20Mw2dLL+VjNbF3m8Y2YTotbtMLP1ZrbWzFYmulbpfRpbgqzdVUUgGEp1KSI9QjJ6Kk8DM4+z/hPgs+4+HvgpMK/d+unufqG7lySoPunlapsCfKB7WETiIuGh4u5vAJXHWf+Oux+OvHwPKE50TSLtHa5vYf2eatwVLCJdkW7nVO4EXo167cASM1tlZnOOt6GZzTGzlWa28tChQwktUnqmQ7XNfLi3RsEi0gWZqS7gCDObTjhUrohafLm77zWzocBfzGxzpOdzDHefR+TQWUlJif5XkFOyv7qJzAzjM6f1S3UpIt1SWvRUzGw88BRwo7tXHFnu7nsjPw8CLwOTU1Oh9CZllY18dEDz3IucipSHipmdCbwEfM3dP4panm9mhUeeAzOADq8gE4m3XRUNbDuoYBE5WQk//GVmC4FpwBAzKwMeBLIA3H0u8AAwGHjSzAACkSu9hgEvR5ZlAgvc/bVE1ytyxI7y8OReZw8tTHElIt1HwkPF3WedYP1dwF0dLN8OTDh2C5Hk2VHegDucM0zBIhKLlB/+Ekl3Oysa2LK/VleFicRAoSISg92VDWzap2ARORGFikiM9lY1smFPje68FzkOhYrISThQ08QHZVUEFSwiHVKoiJykiroWVu86TEtAg1CKtKdQETkF1Q2trNxZSWOLhs0XiaZQETlFDc1BVuyopKapNdWliKQNhYpIF7QEQqzacZhDtc2pLkUkLShURLooGHLWlVWxu7Ih1aWIpJxCRSQO3GHL/lo27dMlx9K7KVRE4mjP4UbW7K7SlWHSaylUROLscH0LK3ZUUqsT+NILKVREEqCxJcjKHYc5UNOU6lJEkkqhIpIgwZCzvqyarQc0Zpj0HgoVkQTbWdHA6l2HaWrVjZLS8ylURJLgcH0ryz+ppLK+JdWliCSUQkUkSVoCIVbvPMzHh+p0OEx6LIWKSJJ9cqieVTt1OEx6pphDxcyuNrPfmNmFkddzYtyu1MwOmtmGTtabmT1mZtvMbJ2ZXRS1bqaZbYmsuy/WWkXSXVVDK+9tr+Cgrg6THuZk5qj/R+AO4P+a2SDgwhi3exp4HHimk/XXAudEHlOA/wKmmFkG8ARwNVAGrDCzRe6+8SRqFklbgaCzrqya0wc0M+ZvA45t8FUdIpPu52QOfx1y9yp3/z4wA5gUy0bu/gZQeZwmNwLPeNh7wAAzOx2YDGxz9+3u3gI8F2kr0qPsq1JvRXqOkwmVPx954u730XnP42SdAeyOel0WWdbZ8g6Z2RwzW2lmKw8dOhSn0kRE5GScMFTMbKuZvQRcaGY3mtkoAHf/VZxqsA6W+XGWd8jd57l7ibuXFBUVxak0ERE5GbH0VH4N7AcqCJ//2GBm683sJ2aWFYcayoARUa+Lgb3HWS7SK3x0oJagRjyWbiaWUPkHd/9Hd3/c3e8GrgD+CtQAj8ahhkXAbZGrwC4Bqt19H7ACOMfMRptZNnBLpK1Ir7CrooH3tldQUacJwKT7iOXqr2ozG+/u6wDcfa2ZXeLu3zGz1Sfa2MwWAtOAIWZWBjwIZEXeay6wGLgO2AY0EL7CDHcPmNm3gNeBDKDU3T882T+gSHfW2BJkza4qTuufy7nDCsnO1K1lkt5iCZVvAPPNbC2wFjgPODJZRPaJNnb3WSdY78A9naxbTDh0RHq1/dVNlNc1c86wQob3z8Wso1OOIql3wl973H0z4ct7XwOGEu5RfMHM8glf5isiSRAIOpv21rBq52HN1SJpK6abH909CPwh8oj2UNwrEpHjqmoID055xsC+/F1RAVkZOiQm6eNk7qgXkTThDmWVjRyoaebvivI5Y0BfHRKTtKBfcUS6sdZAiM37anlfw+pLmlCoiPQAdU0BVu88zNrdVdQ3B1JdjvRiOvwl0oOU1zZTUdfM8AF9Oason5zMjFSXJL2MQkWkh3GHPYcb2V/dxIhBeYwcnKeT+ZI0ChWRHioYcnaU17OnqpFRg/MoHphHRh+dzJfE0q8vIj1cayDE1gN1vPNxObsrGwhpPDFJIIWKSC/R3Bpiy/5a3vm4grLDChdJDIWKSC/T1Bpk875wuKjnIvGmUBHppZpag2zZX8vbH5ezq6JBw+xLXOhEvUgv19wa4qMDtXxSUc+IgX0ZMUhXi8mpU6iICBA+ob/9UD07Kxo4Y2BfzhyUR26W7nORk6NQEZGjBEPOrooGdlc2MKxfLmcOzqNfbjwmeZXeQKEiIh1yD8/jsr+6iYH5WYwYlEdRQY4GrpTjUqiIyAkdrm/lcH01fbMzGDEwj9MH5Oq8i3RIoSIiMWtsCfLRgVo+PlTHaf1zKR7Yl0IdGpMoSQkVM5sJ/CfhueafcveH263/AXBrVE3nA0XuXmlmO4BaIAgE3L0kGTWLSOeCIWfP4Ub2HG5kQF4WxQPzGFqYQx8NA9PrJTxUzCwDeAK4GigDVpjZInffeKSNu/8C+EWk/fXAd929Muptprt7eaJrFZGTV9XQSlVDNVmZfRjeP5czBvYlL1sHQXqrZPzNTwa2uft2ADN7DrgR2NhJ+1nAwiTUJSJx1BoIsbOigZ0VDQzMz2L4gL4MLczVIJa9TDLOtJ0B7I56XRZZdgwzywNmAi9GLXZgiZmtMrM5nX2Imc0xs5VmtvLQoUNxKFtETtXh+lY+3FPDm1sPsXl/DdWNrakuSZIkGT2Vjn5N6Ww8iOuBt9sd+rrc3fea2VDgL2a22d3fOOYN3ecB8wBKSko03oRIGggEnbLKRsoqG8nPyWT4gFyG9cvVTZU9WDJ6KmXAiKjXxcDeTtreQrtDX+6+N/LzIPAy4cNpItLN1DcH2Hqgjre3lbN612H2VzdpvLEeKBk9lRXAOWY2GthDODi+2r6RmfUHPgv8Q9SyfKCPu9dGns8AfpKEmkUkQdyhsq6FyroWMvoYRYU5nNY/l0F52bp6rAdIeKi4e8DMvgW8TviS4lJ3/9DM7o6snxtp+kVgibvXR20+DHg5cgdvJrDA3V9LdM0ikhzBkLfdtZ+V2YehhTmc1i+XAXlZunO/m0rKdX/uvhhY3G7Z3HavnwaebrdsOzAhweWJSBpoDYTa7n3JyerDsH65DC3MoX9fBUx3oovJRSTtNLeG2FXRwK6KBnKy+jC0MBww6sGkP4WKiKS15tYQuyvDoyZnZ/ZhSEEOQ/vl6BxMmlKoiEi30RIIsbeqkb1VjWRkGEPycygqzGFwQbYGuEwTChUR6ZaCQedATRMHapowg4H52RQV5DCkIIe+2boPJlUUKiLS7UVfpryFWvJzMhlSkM2QgvCJfh0mSx6Fioj0OPXNAeqbA+ysaCAzwxiUn83gghwG52frbv4EU6iISI8WCDoHa5o5WNMMQEFuJoPzsxmUn81AneyPO4WKiPQqdU0B6prCvZiMPkb/vKy2kNGEY12nUBGRXisY8rZzMQDZmX3CPZj8bAblZeuE/ylQqIiIRLQEQm3DxgD0zc5gQF5W26EynY85MYWKiEgnGluCNLYE2Vd1bMgM6KueTEcUKiIiMWofMrlZ4ZAJP7LJz87o9cPIKFRERE5RU2uQ/dXBtsNlmRnGgLxsBvQNB02/3N53j4xCRUQkTgJBp7y2mfLa8OXLffpAYW4W/ft++ujp52UUKiIiCRIKQXVDK9UNrW3LcrL6HBUyhblZZPSg3oxCRUQkiZpbQxxs/fRmTDPIz8mkX24W/fOy6JebSUFOZrc9N6NQERFJIfdPb8jcW9UIQEYfoyA3HDT9+mZSmJvVbS4CUKiIiKSZYMiPOWyW0ccozA0HTPhnJvnZmWl3IUBSQsXMZgL/SXiO+qfc/eF266cBfwQ+iSx6yd1/Esu2IiK9QTDkVDW0UhUVNH36QEFOFgU54ZDpl5tFQW5mSs/RJDxUzCwDeAK4GigDVpjZInff2K7pm+7+hVPcVkSk1wmFoKaxlZrG1qOW52VnUBDp1RwJnGRddZaMnspkYJu7bwcws+eAG4FYgqEr24qI9EoNLUEaWoJtFwNA+B6agpxMCiIXAhTkZJKfkxn3GTOTESpnALujXpcBUzpod6mZfQDsBSJIh7wAAAkwSURBVL7v7h+exLaY2RxgDsCZZ54Zh7JFRHqOQPDYw2cQHhUgPyd+vZhkTOrc0cE9b/d6NTDS3ScAvwJeOYltwwvd57l7ibuXFBUVnXKxIiK9SVNrkIrIKM3xkIxQKQNGRL0uJtwbaePuNe5eF3m+GMgysyGxbCsiIukjGaGyAjjHzEabWTZwC7AouoGZnWaRC7DNbHKkropYthURkfSR8HMq7h4ws28BrxO+LLjU3T80s7sj6+cCfw9808wCQCNwi7s70OG2ia5ZREROTVLuU4kc0lrcbtncqOePA4/Huq2IiKSnZBz+EhGRXkKhIiIicaNQERGRuFGoiIhI3ChUREQkbhQqIiISNwoVERGJG4WKiIjEjUJFRETiRqEiIiJxo1AREZG4UaiIiEjcKFRERCRuFCoiIhI3ChUREYkbhYqIiMSNQkVEROJGoSIiInGTlFAxs5lmtsXMtpnZfR2sv9XM1kUe75jZhKh1O8xsvZmtNbOVyahXREROTcLnqDezDOAJ4GqgDFhhZovcfWNUs0+Az7r7YTO7FpgHTIlaP93dyxNdq4iIdE0yeiqTgW3uvt3dW4DngBujG7j7O+5+OPLyPaA4CXWJiEicJSNUzgB2R70uiyzrzJ3Aq1GvHVhiZqvMbE4C6hMRkThJ+OEvwDpY5h02NJtOOFSuiFp8ubvvNbOhwF/MbLO7v9HBtnOAOQBnnnlm16sWEZGTloyeShkwIup1MbC3fSMzGw88Bdzo7hVHlrv73sjPg8DLhA+nHcPd57l7ibuXFBUVxbF8ERGJVTJCZQVwjpmNNrNs4BZgUXQDMzsTeAn4mrt/FLU838wKjzwHZgAbklCziIicgoQf/nL3gJl9C3gdyABK3f1DM7s7sn4u8AAwGHjSzAAC7l4CDANejizLBBa4+2uJrllERE5NMs6p4O6LgcXtls2Nen4XcFcH220HJrRfLiIi6Ul31IuISNwoVEREJG4UKiIiEjcKFRERiRuFioiIxI1CRURE4kahIiIicaNQERGRuFGoiIhI3ChUREQkbhQqIiISNwoVERGJG4WKiIjEjUJFRETiRqEiIiJxo1AREZG4UaiIiEjcKFRERCRuFCoiIhI3SQkVM5tpZlvMbJuZ3dfBejOzxyLr15nZRbFuKyIi6SPhoWJmGcATwLXABcAsM7ugXbNrgXMijznAf53EtiIikiYyk/AZk4Ft7r4dwMyeA24ENka1uRF4xt0deM/MBpjZ6cCoGLZNiIKcTLIzQon+GJFOFeYm45+nSHwlY689A9gd9boMmBJDmzNi3BYAM5tDuJcDUGdmW7pQ8xCgvAvbJ1I61waqr6ui6huS0kI60Y2+v7SUzvWdF483SUaoWAfLPMY2sWwbXug+D5h3cqV1zMxWuntJPN4r3tK5NlB9XaX6ukb1nTozWxmP90lGqJQBI6JeFwN7Y2yTHcO2IiKSJpJx9dcK4BwzG21m2cAtwKJ2bRYBt0WuArsEqHb3fTFuKyIiaSLhPRV3D5jZt4DXgQyg1N0/NLO7I+vnAouB64BtQANwx/G2TXTNxOkwWoKkc22g+rpK9XWN6jt18Tl9EL7gSkREpOt0R72IiMSNQkVEROKmV4VKug8XE0N9t0bqWmdm75jZhKh1O8xsvZmtjdelgadQ3zQzq47UsNbMHoh12yTV94Oo2jaYWdDMBkXWJfT7M7NSMztoZhs6WZ/qfe9E9aV63ztRfSnb92KoLWX7XeQzRpjZMjPbZGYfmtl3OmgTv/3P3XvFg/CJ/o+BswhfqvwBcEG7NtcBrxK+P+YS4P1Yt01SfZcBAyPPrz1SX+T1DmBIir+/acCfTmXbZNTXrv31wF+T+P1NBS4CNnSyPmX7Xoz1pWzfi7G+VO57x60tlftd5DNOBy6KPC8EPkrk/329qafSNlyMu7cAR4Z8idY2XIy7vwccGS4mlm0TXp+7v+PuhyMv3yN8306ydOU7SIvvr51ZwMI419Apd38DqDxOk1TueyesL8X7XizfX2cS/v2dZG1J3e8A3H2fu6+OPK8FNhEerSRa3Pa/3hQqnQ0FE0ubWLZNRn3R7iT8m8URDiwxs1UWHrIm3mKt71Iz+8DMXjWzMSe5bTLqw8zygJnAi1GLE/39nUgq972Tlex9L1ap2vdikg77nZmNAiYC77dbFbf9rzeNWJeU4WK6IObPMLPphP9hXxG1+HJ332tmQ4G/mNnmyG9QyaxvNTDS3evM7DrgFcIjT6fV90f4EMTb7h7922Wiv78TSeW+F7MU7XuxSOW+F6uU7ndmVkA40O5195r2qzvY5JT2v97UU+nKcDGxbJuM+jCz8cBTwI3uXnFkubvvjfw8CLxMuNua1Prcvcbd6yLPFwNZZjYklm2TUV+UW2h3CCIJ39+JpHLfi0kK970TSvG+F6uU7XdmlkU4UOa7+0sdNInf/pfIE0Tp9CDcK9sOjObTE05j2rX5PEefrFoe67ZJqu9MwqMOXNZueT5QGPX8HWBmCuo7jU9vqJ0M7Ip8l2nx/UXa9Sd8/Ds/md9f5L1H0fmJ5pTtezHWl7J9L8b6Urbvnai2NNjvDHgG+OVx2sRt/+s1h788zYeLibG+B4DBwJNmBhDw8Iinw4CXI8sygQXu/loK6vt74JtmFgAagVs8vGemy/cH8EVgibvXR22e8O/PzBYSvkJpiJmVAQ8CWVG1pXSoohjqS9m+F2N9Kdv3YqgNUrTfRVwOfA1Yb2ZrI8v+mfAvCnHf/zRMi4iIxE1vOqciIiIJplAREZG4UaiIiEjcKFRERCRuFCoiIhI3ChUREYkbhYqIiMSNQkUkgczsfDN7IzJHxQ/MbFuqaxJJJIWKSIKYWSYwH/iOu48nPCdFhxM5ifQUChWRxLkZ+MDd10RebwQ+MLOzzOy3ZvZCCmsTSQiFikjijAfWRr0eC6z18IRHd6aoJpGEUqiIJE4FcC6AmV0I/APhUV5FeqxeM0qxSAr8Dvizma0A3gV2uPv2FNckklDqqYgkTpO7T3H3SYSnZH0ZwMwGm9lcYKKZ3Z/SCkXiTEPfiySImf2Q8Gx/rcDbwP9x9+bUViWSWAoVERGJGx3+EhGRuFGoiIhI3ChUREQkbhQqIiISNwoVERGJG4WKiIjEjUJFRETi5v8DaEPCriyF0n0AAAAASUVORK5CYII=\n"
|
|
],
|
|
"text/plain": [
|
|
"<Figure size 432x288 with 1 Axes>"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
}
|
|
],
|
|
"source": [
|
|
"gsh = np.linspace(.01, 10, 1000)\n",
|
|
"fig = plt.figure()\n",
|
|
"ax = plt.subplot(111)\n",
|
|
"\n",
|
|
"ax.fill_between(gsh, 1/gsh, alpha=0.3, label='Stabilitaetsbereich')\n",
|
|
"ax.set_ylim([0,2])\n",
|
|
"ax.set_xlim([-.1,2])\n",
|
|
"ax.set_xlabel('$g_1$')\n",
|
|
"ax.set_ylabel('$g_2$')\n",
|
|
"ls = np.linspace(0, R, 100)\n",
|
|
"ax.plot(np.ones_like(ls), g(L=[ls]), color='orange', linewidth=5, label='g fuer $L\\in (0,1)$m')\n",
|
|
"ax.legend()\n",
|
|
"plt.show()\n",
|
|
"fig.savefig('stabdiag.pdf')"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 33,
|
|
"metadata": {
|
|
"autoscroll": false,
|
|
"collapsed": false,
|
|
"ein.hycell": false,
|
|
"ein.tags": "worksheet-0",
|
|
"slideshow": {
|
|
"slide_type": "-"
|
|
}
|
|
},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"array([1. , 0.98989899, 0.97979798, 0.96969697, 0.95959596,\n 0.94949495, 0.93939394, 0.92929293, 0.91919192, 0.90909091,\n 0.8989899 , 0.88888889, 0.87878788, 0.86868687, 0.85858586,\n 0.84848485, 0.83838384, 0.82828283, 0.81818182, 0.80808081,\n 0.7979798 , 0.78787879, 0.77777778, 0.76767677, 0.75757576,\n 0.74747475, 0.73737374, 0.72727273, 0.71717172, 0.70707071,\n 0.6969697 , 0.68686869, 0.67676768, 0.66666667, 0.65656566,\n 0.64646465, 0.63636364, 0.62626263, 0.61616162, 0.60606061,\n 0.5959596 , 0.58585859, 0.57575758, 0.56565657, 0.55555556,\n 0.54545455, 0.53535354, 0.52525253, 0.51515152, 0.50505051,\n 0.49494949, 0.48484848, 0.47474747, 0.46464646, 0.45454545,\n 0.44444444, 0.43434343, 0.42424242, 0.41414141, 0.4040404 ,\n 0.39393939, 0.38383838, 0.37373737, 0.36363636, 0.35353535,\n 0.34343434, 0.33333333, 0.32323232, 0.31313131, 0.3030303 ,\n 0.29292929, 0.28282828, 0.27272727, 0.26262626, 0.25252525,\n 0.24242424, 0.23232323, 0.22222222, 0.21212121, 0.2020202 ,\n 0.19191919, 0.18181818, 0.17171717, 0.16161616, 0.15151515,\n 0.14141414, 0.13131313, 0.12121212, 0.11111111, 0.1010101 ,\n 0.09090909, 0.08080808, 0.07070707, 0.06060606, 0.05050505,\n 0.04040404, 0.03030303, 0.02020202, 0.01010101, 0. ])"
|
|
]
|
|
},
|
|
"execution_count": 33,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"g(L=[ls])"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {
|
|
"autoscroll": false,
|
|
"collapsed": false,
|
|
"ein.hycell": false,
|
|
"ein.tags": "worksheet-0",
|
|
"slideshow": {
|
|
"slide_type": "-"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": []
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"argv": [
|
|
"python",
|
|
"-m",
|
|
"ipykernel_launcher",
|
|
"-f",
|
|
"{connection_file}"
|
|
],
|
|
"display_name": "Python 3",
|
|
"env": null,
|
|
"interrupt_mode": "signal",
|
|
"language": "python",
|
|
"metadata": null,
|
|
"name": "python3"
|
|
},
|
|
"name": "Untitled.ipynb"
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 2
|
|
}
|