mirror of
https://github.com/vale981/fpraktikum
synced 2025-03-06 01:51:38 -05:00
396 lines
8.8 KiB
Text
396 lines
8.8 KiB
Text
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 139,
|
|
"metadata": {
|
|
"autoscroll": false,
|
|
"ein.hycell": false,
|
|
"ein.tags": "worksheet-0",
|
|
"slideshow": {
|
|
"slide_type": "-"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"import numpy as np\n",
|
|
"import matplotlib.pyplot as plt\n",
|
|
"from importlib import reload\n",
|
|
"import utility\n",
|
|
"\n",
|
|
"reload(utility)\n",
|
|
"from utility import *\n",
|
|
"\n",
|
|
"from scipy.optimize import curve_fit\n",
|
|
"from SecondaryValue import SecondaryValue"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 114,
|
|
"metadata": {
|
|
"autoscroll": false,
|
|
"ein.hycell": false,
|
|
"ein.tags": "worksheet-0",
|
|
"slideshow": {
|
|
"slide_type": "-"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"org_compliance = 0.0098\n",
|
|
"a_an = 26 # cm^2\n",
|
|
"a_org = 6.4e-2 # cm^2\n",
|
|
"a_fol = 25 # cm^2\n",
|
|
"i_ein = 100e-3 # watt/cm^2\n",
|
|
"u_ref = 32.2e-3 # volt"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 122,
|
|
"metadata": {
|
|
"autoscroll": false,
|
|
"ein.hycell": false,
|
|
"ein.tags": "worksheet-0",
|
|
"slideshow": {
|
|
"slide_type": "-"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"intensity = SecondaryValue('u/u_ref*i0', defaults=dict(i0=i_ein, u_ref=u_ref))"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 170,
|
|
"metadata": {
|
|
"autoscroll": false,
|
|
"ein.hycell": false,
|
|
"ein.tags": "worksheet-0",
|
|
"slideshow": {
|
|
"slide_type": "-"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"intensities, d_intensites = intensity(u=([.011, 0.017, .021, .026, .032], 1e-3))"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 188,
|
|
"metadata": {
|
|
"autoscroll": false,
|
|
"ein.hycell": false,
|
|
"ein.tags": "worksheet-0",
|
|
"slideshow": {
|
|
"slide_type": "-"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"ccurves = [parse_ccurve(f'../messungen/191114_OM_VB/2_{point}.dat') \\\n",
|
|
" for point in ['a', 'b', 'c', 'd', 'e']]\n",
|
|
"\n",
|
|
"ccurve_specs = [(intsy, analyze_ccurve(curve, a_an, intsy)) \\\n",
|
|
" for curve, intsy in zip(ccurves, intensities)]"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 187,
|
|
"metadata": {
|
|
"autoscroll": false,
|
|
"ein.hycell": false,
|
|
"ein.tags": "worksheet-0",
|
|
"slideshow": {
|
|
"slide_type": "-"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"%matplotlib qt5\n",
|
|
"fig, ax = plot_ccurve(ccurves[0], label=intensities[0]*1000, area=a_an)\n",
|
|
"\n",
|
|
"for ccurve, intsy in zip(ccurves[1:], intensities[1:]):\n",
|
|
" plot_ccurve_line(ax, ccurve, label=intsy*1000, area=a_an)\n",
|
|
"\n",
|
|
"ax.legend()\n",
|
|
"fig.show()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 168,
|
|
"metadata": {
|
|
"autoscroll": false,
|
|
"ein.hycell": false,
|
|
"ein.tags": "worksheet-0",
|
|
"slideshow": {
|
|
"slide_type": "-"
|
|
}
|
|
},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"array([0.04347826, 0.05279503, 0.06521739, 0.08074534, 0.09937888])"
|
|
]
|
|
},
|
|
"execution_count": 168,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"intensities"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 241,
|
|
"metadata": {
|
|
"autoscroll": false,
|
|
"ein.hycell": false,
|
|
"ein.tags": "worksheet-0",
|
|
"slideshow": {
|
|
"slide_type": "-"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"plt.clf()\n",
|
|
"plt.plot(*np.array([[intsy*1000, params['j_c']] \\\n",
|
|
" for intsy, params in ccurve_specs]).T, marker='*')\n",
|
|
"plt.xlabel('Intensitaet [$mW/cm^2$]')\n",
|
|
"plt.ylabel('$j_{SC}$ [$A/cm^2$]')\n",
|
|
"plt.savefig('./figs/B/j_sc.pdf', dpi=300)\n",
|
|
"plt.grid()\n",
|
|
"#plt.xscale('log')\n",
|
|
"#plt.yscale('log')\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 243,
|
|
"metadata": {
|
|
"autoscroll": false,
|
|
"ein.hycell": false,
|
|
"ein.tags": "worksheet-0",
|
|
"slideshow": {
|
|
"slide_type": "-"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"plt.clf()\n",
|
|
"plt.plot(*np.array([[(intsy*1000), params['u_cc']] \\\n",
|
|
" for intsy, params in ccurve_specs]).T, marker='*')\n",
|
|
"plt.xlabel('Intensitaet [$mW/cm^2$]')\n",
|
|
"plt.ylabel('$U_{CC}$ [$V$]')\n",
|
|
"plt.xscale('log')\n",
|
|
"plt.grid(which='both')\n",
|
|
"plt.savefig('./figs/B/u_cc.pdf', dpi=300)\n",
|
|
"#plt.yscale('log')\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 103,
|
|
"metadata": {
|
|
"autoscroll": false,
|
|
"ein.hycell": false,
|
|
"ein.tags": "worksheet-0",
|
|
"slideshow": {
|
|
"slide_type": "-"
|
|
}
|
|
},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"0.0168614765323676"
|
|
]
|
|
},
|
|
"execution_count": 103,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"0.011 * (.032/.011)**(2/5)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 105,
|
|
"metadata": {
|
|
"autoscroll": false,
|
|
"ein.hycell": false,
|
|
"ein.tags": "worksheet-0",
|
|
"slideshow": {
|
|
"slide_type": "-"
|
|
}
|
|
},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"[(0.034161490683229816,\n",
|
|
" {'j_c': 0.0025912392307692305,\n",
|
|
" 'u_cc': 0.5086008577882963,\n",
|
|
" 'u_mlp': 0.3977111360504424,\n",
|
|
" 'p_mlp': 0.022268705563519103,\n",
|
|
" 'ff': 0.6498857684076272,\n",
|
|
" 'eta': 0.025071759410675354}),\n",
|
|
" (0.052795031055900624,\n",
|
|
" {'j_c': 0.01341955,\n",
|
|
" 'u_cc': 0.5600084576663334,\n",
|
|
" 'u_mlp': 0.37999930322896436,\n",
|
|
" 'p_mlp': 0.11432399757691399,\n",
|
|
" 'ff': 0.585101909146971,\n",
|
|
" 'eta': 0.08328580818951652}),\n",
|
|
" (0.06521739130434784,\n",
|
|
" {'j_c': 0.016769280769230767,\n",
|
|
" 'u_cc': 0.5613136094311547,\n",
|
|
" 'u_mlp': 0.36000019842026715,\n",
|
|
" 'p_mlp': 0.13293315750161686,\n",
|
|
" 'ff': 0.5431752390708393,\n",
|
|
" 'eta': 0.07839647750095351}),\n",
|
|
" (0.08074534161490683,\n",
|
|
" {'j_c': 0.02099583076923077,\n",
|
|
" 'u_cc': 0.5641834857878043,\n",
|
|
" 'u_mlp': 0.3399999063957519,\n",
|
|
" 'p_mlp': 0.1534276805047185,\n",
|
|
" 'ff': 0.4981692745272282,\n",
|
|
" 'eta': 0.07308241586171502}),\n",
|
|
" (0.09937888198757765,\n",
|
|
" {'j_c': 0.025274496153846155,\n",
|
|
" 'u_cc': 0.5675239554252917,\n",
|
|
" 'u_mlp': 0.32765580118957827,\n",
|
|
" 'p_mlp': 0.17174272136274898,\n",
|
|
" 'ff': 0.4605091752711381,\n",
|
|
" 'eta': 0.06646773591202546})]"
|
|
]
|
|
},
|
|
"execution_count": 105,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"ccurve_specs"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 161,
|
|
"metadata": {
|
|
"autoscroll": false,
|
|
"ein.hycell": false,
|
|
"ein.tags": "worksheet-0",
|
|
"slideshow": {
|
|
"slide_type": "-"
|
|
}
|
|
},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"[<matplotlib.lines.Line2D at 0x7f0eb414d940>,\n",
|
|
" <matplotlib.lines.Line2D at 0x7f0eb414dc50>]"
|
|
]
|
|
},
|
|
"execution_count": 161,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"plt.clf()\n",
|
|
"points = np.arange(0,6)\n",
|
|
"ints = .011 * (.032/.011)**(points/5)\n",
|
|
"plt.plot(np.arange(1,6), intensities, ints)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 162,
|
|
"metadata": {
|
|
"autoscroll": false,
|
|
"ein.hycell": false,
|
|
"ein.tags": "worksheet-0",
|
|
"slideshow": {
|
|
"slide_type": "-"
|
|
}
|
|
},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"array([0.03416149, 0.05279503, 0.06521739, 0.08074534, 0.09937888])"
|
|
]
|
|
},
|
|
"execution_count": 162,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"intensities"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 163,
|
|
"metadata": {
|
|
"autoscroll": false,
|
|
"ein.hycell": false,
|
|
"ein.tags": "worksheet-0",
|
|
"slideshow": {
|
|
"slide_type": "-"
|
|
}
|
|
},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"array([0.011 , 0.01361897, 0.01686148, 0.02087599, 0.02584631,\n",
|
|
" 0.032 ])"
|
|
]
|
|
},
|
|
"execution_count": 163,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"ints"
|
|
]
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "Python 3",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.8.0"
|
|
},
|
|
"name": "b.ipynb"
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 2
|
|
}
|