diff --git a/SZ/auswertung/a_1.ipynb b/SZ/auswertung/a_1.ipynb index f23bbb5..82d46b8 100644 --- a/SZ/auswertung/a_1.ipynb +++ b/SZ/auswertung/a_1.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "code", - "execution_count": 55, + "execution_count": 57, "metadata": { "autoscroll": false, "collapsed": false, @@ -450,7 +450,7 @@ }, { "cell_type": "code", - "execution_count": 56, + "execution_count": 58, "metadata": { "autoscroll": false, "collapsed": false, @@ -465,9 +465,9 @@ "name": "stdout", "output_type": "stream", "text": [ - "an_light (-0.02630074615384615, 0.5599925566487172, 0.30999911523151735, 0.156638522040846, 0.1282742291712253, 0.06024558540032538)\n", - "fol_light (-3.2946186e-05, 7.129314361652983, 4.02000070175182, 0.002029756267025768, 17.568978096781162, 0.0008119025068103072)\n", - "org_light (-0.0040643187499999995, 0.9183601229960922, 0.7400008818112345, 0.00016271274581558095, 0.5744693424183512, 0.025423866533684523)\n" + "an_light (0.02630074615384615, 0.5599925566487172, 0.30999911523151735, 0.156638522040846, 0.40904859440059965, 0.06024558540032538)\n", + "fol_light (3.2946186e-05, 7.129314361652983, 4.02000070175182, 0.002029756267025768, 0.3456614690624081, 0.0008119025068103072)\n", + "org_light (0.0040643187499999995, 0.9183601229960922, 0.7400008818112345, 0.00016271274581558095, 0.6811469583998824, 0.025423866533684523)\n" ] } ], diff --git a/SZ/auswertung/b.ipynb b/SZ/auswertung/b.ipynb new file mode 100644 index 0000000..ee71de2 --- /dev/null +++ b/SZ/auswertung/b.ipynb @@ -0,0 +1,396 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 139, + "metadata": { + "autoscroll": false, + "ein.hycell": false, + "ein.tags": "worksheet-0", + "slideshow": { + "slide_type": "-" + } + }, + "outputs": [], + "source": [ + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "from importlib import reload\n", + "import utility\n", + "\n", + "reload(utility)\n", + "from utility import *\n", + "\n", + "from scipy.optimize import curve_fit\n", + "from SecondaryValue import SecondaryValue" + ] + }, + { + "cell_type": "code", + "execution_count": 114, + "metadata": { + "autoscroll": false, + "ein.hycell": false, + "ein.tags": "worksheet-0", + "slideshow": { + "slide_type": "-" + } + }, + "outputs": [], + "source": [ + "org_compliance = 0.0098\n", + "a_an = 26 # cm^2\n", + "a_org = 6.4e-2 # cm^2\n", + "a_fol = 25 # cm^2\n", + "i_ein = 100e-3 # watt/cm^2\n", + "u_ref = 32.2e-3 # volt" + ] + }, + { + "cell_type": "code", + "execution_count": 122, + "metadata": { + "autoscroll": false, + "ein.hycell": false, + "ein.tags": "worksheet-0", + "slideshow": { + "slide_type": "-" + } + }, + "outputs": [], + "source": [ + "intensity = SecondaryValue('u/u_ref*i0', defaults=dict(i0=i_ein, u_ref=u_ref))" + ] + }, + { + "cell_type": "code", + "execution_count": 170, + "metadata": { + "autoscroll": false, + "ein.hycell": false, + "ein.tags": "worksheet-0", + "slideshow": { + "slide_type": "-" + } + }, + "outputs": [], + "source": [ + "intensities, d_intensites = intensity(u=([.011, 0.017, .021, .026, .032], 1e-3))" + ] + }, + { + "cell_type": "code", + "execution_count": 188, + "metadata": { + "autoscroll": false, + "ein.hycell": false, + "ein.tags": "worksheet-0", + "slideshow": { + "slide_type": "-" + } + }, + "outputs": [], + "source": [ + "ccurves = [parse_ccurve(f'../messungen/191114_OM_VB/2_{point}.dat') \\\n", + " for point in ['a', 'b', 'c', 'd', 'e']]\n", + "\n", + "ccurve_specs = [(intsy, analyze_ccurve(curve, a_an, intsy)) \\\n", + " for curve, intsy in zip(ccurves, intensities)]" + ] + }, + { + "cell_type": "code", + "execution_count": 187, + "metadata": { + "autoscroll": false, + "ein.hycell": false, + "ein.tags": "worksheet-0", + "slideshow": { + "slide_type": "-" + } + }, + "outputs": [], + "source": [ + "%matplotlib qt5\n", + "fig, ax = plot_ccurve(ccurves[0], label=intensities[0]*1000, area=a_an)\n", + "\n", + "for ccurve, intsy in zip(ccurves[1:], intensities[1:]):\n", + " plot_ccurve_line(ax, ccurve, label=intsy*1000, area=a_an)\n", + "\n", + "ax.legend()\n", + "fig.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 168, + "metadata": { + "autoscroll": false, + "ein.hycell": false, + "ein.tags": "worksheet-0", + "slideshow": { + "slide_type": "-" + } + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([0.04347826, 0.05279503, 0.06521739, 0.08074534, 0.09937888])" + ] + }, + "execution_count": 168, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "intensities" + ] + }, + { + "cell_type": "code", + "execution_count": 241, + "metadata": { + "autoscroll": false, + "ein.hycell": false, + "ein.tags": "worksheet-0", + "slideshow": { + "slide_type": "-" + } + }, + "outputs": [], + "source": [ + "plt.clf()\n", + "plt.plot(*np.array([[intsy*1000, params['j_c']] \\\n", + " for intsy, params in ccurve_specs]).T, marker='*')\n", + "plt.xlabel('Intensitaet [$mW/cm^2$]')\n", + "plt.ylabel('$j_{SC}$ [$A/cm^2$]')\n", + "plt.savefig('./figs/B/j_sc.pdf', dpi=300)\n", + "plt.grid()\n", + "#plt.xscale('log')\n", + "#plt.yscale('log')\n" + ] + }, + { + "cell_type": "code", + "execution_count": 243, + "metadata": { + "autoscroll": false, + "ein.hycell": false, + "ein.tags": "worksheet-0", + "slideshow": { + "slide_type": "-" + } + }, + "outputs": [], + "source": [ + "plt.clf()\n", + "plt.plot(*np.array([[(intsy*1000), params['u_cc']] \\\n", + " for intsy, params in ccurve_specs]).T, marker='*')\n", + "plt.xlabel('Intensitaet [$mW/cm^2$]')\n", + "plt.ylabel('$U_{CC}$ [$V$]')\n", + "plt.xscale('log')\n", + "plt.grid(which='both')\n", + "plt.savefig('./figs/B/u_cc.pdf', dpi=300)\n", + "#plt.yscale('log')\n" + ] + }, + { + "cell_type": "code", + "execution_count": 103, + "metadata": { + "autoscroll": false, + "ein.hycell": false, + "ein.tags": "worksheet-0", + "slideshow": { + "slide_type": "-" + } + }, + "outputs": [ + { + "data": { + "text/plain": [ + "0.0168614765323676" + ] + }, + "execution_count": 103, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "0.011 * (.032/.011)**(2/5)" + ] + }, + { + "cell_type": "code", + "execution_count": 105, + "metadata": { + "autoscroll": false, + "ein.hycell": false, + "ein.tags": "worksheet-0", + "slideshow": { + "slide_type": "-" + } + }, + "outputs": [ + { + "data": { + "text/plain": [ + "[(0.034161490683229816,\n", + " {'j_c': 0.0025912392307692305,\n", + " 'u_cc': 0.5086008577882963,\n", + " 'u_mlp': 0.3977111360504424,\n", + " 'p_mlp': 0.022268705563519103,\n", + " 'ff': 0.6498857684076272,\n", + " 'eta': 0.025071759410675354}),\n", + " (0.052795031055900624,\n", + " {'j_c': 0.01341955,\n", + " 'u_cc': 0.5600084576663334,\n", + " 'u_mlp': 0.37999930322896436,\n", + " 'p_mlp': 0.11432399757691399,\n", + " 'ff': 0.585101909146971,\n", + " 'eta': 0.08328580818951652}),\n", + " (0.06521739130434784,\n", + " {'j_c': 0.016769280769230767,\n", + " 'u_cc': 0.5613136094311547,\n", + " 'u_mlp': 0.36000019842026715,\n", + " 'p_mlp': 0.13293315750161686,\n", + " 'ff': 0.5431752390708393,\n", + " 'eta': 0.07839647750095351}),\n", + " (0.08074534161490683,\n", + " {'j_c': 0.02099583076923077,\n", + " 'u_cc': 0.5641834857878043,\n", + " 'u_mlp': 0.3399999063957519,\n", + " 'p_mlp': 0.1534276805047185,\n", + " 'ff': 0.4981692745272282,\n", + " 'eta': 0.07308241586171502}),\n", + " (0.09937888198757765,\n", + " {'j_c': 0.025274496153846155,\n", + " 'u_cc': 0.5675239554252917,\n", + " 'u_mlp': 0.32765580118957827,\n", + " 'p_mlp': 0.17174272136274898,\n", + " 'ff': 0.4605091752711381,\n", + " 'eta': 0.06646773591202546})]" + ] + }, + "execution_count": 105, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ccurve_specs" + ] + }, + { + "cell_type": "code", + "execution_count": 161, + "metadata": { + "autoscroll": false, + "ein.hycell": false, + "ein.tags": "worksheet-0", + "slideshow": { + "slide_type": "-" + } + }, + "outputs": [ + { + "data": { + "text/plain": [ + "[,\n", + " ]" + ] + }, + "execution_count": 161, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "plt.clf()\n", + "points = np.arange(0,6)\n", + "ints = .011 * (.032/.011)**(points/5)\n", + "plt.plot(np.arange(1,6), intensities, ints)" + ] + }, + { + "cell_type": "code", + "execution_count": 162, + "metadata": { + "autoscroll": false, + "ein.hycell": false, + "ein.tags": "worksheet-0", + "slideshow": { + "slide_type": "-" + } + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([0.03416149, 0.05279503, 0.06521739, 0.08074534, 0.09937888])" + ] + }, + "execution_count": 162, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "intensities" + ] + }, + { + "cell_type": "code", + "execution_count": 163, + "metadata": { + "autoscroll": false, + "ein.hycell": false, + "ein.tags": "worksheet-0", + "slideshow": { + "slide_type": "-" + } + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([0.011 , 0.01361897, 0.01686148, 0.02087599, 0.02584631,\n", + " 0.032 ])" + ] + }, + "execution_count": 163, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ints" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.0" + }, + "name": "b.ipynb" + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/SZ/auswertung/c.ipynb b/SZ/auswertung/c.ipynb new file mode 100644 index 0000000..edbf9e4 --- /dev/null +++ b/SZ/auswertung/c.ipynb @@ -0,0 +1,291 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 38, + "metadata": { + "autoscroll": false, + "collapsed": false, + "ein.hycell": false, + "ein.tags": "worksheet-0", + "slideshow": { + "slide_type": "-" + } + }, + "outputs": [], + "source": [ + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "from importlib import reload\n", + "import utility\n", + "\n", + "reload(utility)\n", + "from utility import *\n", + "\n", + "from scipy.optimize import curve_fit\n", + "from SecondaryValue import SecondaryValue\n", + "import pandas as pd" + ] + }, + { + "cell_type": "code", + "execution_count": 59, + "metadata": { + "autoscroll": false, + "collapsed": false, + "ein.hycell": false, + "ein.tags": "worksheet-0", + "slideshow": { + "slide_type": "-" + } + }, + "outputs": [], + "source": [ + "area = 26 # cm^2\n", + "int_ein = 100e-3 # w/cm^2" + ] + }, + { + "cell_type": "code", + "execution_count": 171, + "metadata": { + "autoscroll": false, + "collapsed": false, + "ein.hycell": false, + "ein.tags": "worksheet-0", + "slideshow": { + "slide_type": "-" + } + }, + "outputs": [], + "source": [ + "ccurves = pd.DataFrame(columns=['desc', 'curve', 'area', 'j_c', 'u_cc', 'ff', 'eta', 'p_mlp', 'u_mlp'])\n", + "for point, desc, a in [\n", + " ('a', '3x3_hell', 6),\n", + " ('b_1', '3x3_schaltung_1', 6),\n", + " ('b_2', '3x3_schaltung_2', 6),\n", + " ('b_31', '3x3_schaltung_3', 6),\n", + " ('b_41', '3x3_schaltung_4', 6),\n", + " ('c_1', '3x3_verschattung_1', 6),\n", + " ('c_2', '3x3_verschattung_2', 6),\n", + " ('c_3', '3x3_verschattung_3', 6),\n", + " ('d_1', 'huge_hell', 13),\n", + " ('d_2', 'huge_verbraucher', 13)]:\n", + " row = pd.Series({'desc': desc, 'area': a*area, 'curve': parse_ccurve(f'../messungen/191114_OM_VB/3_{point}.dat')})\n", + " \n", + " ccurves.loc[desc] = pd.concat((row, pd.Series(analyze_ccurve(row['curve'], row['area'], int_ein))))\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "ein.tags": "worksheet-0", + "slideshow": { + "slide_type": "-" + } + }, + "source": [ + "# Plot all ccurves" + ] + }, + { + "cell_type": "code", + "execution_count": 158, + "metadata": { + "autoscroll": false, + "collapsed": false, + "ein.hycell": false, + "ein.tags": "worksheet-0", + "slideshow": { + "slide_type": "-" + } + }, + "outputs": [ + { + "data": { + "image/png": [ + "iVBORw0KGgoAAAANSUhEUgAAAbUAAAEGCAYAAADi9AsGAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3df5xddX3n8debYFjkhxAJISRUAqRDQ0sRIqArNRasJEsbWpsa6pbo0k1RaIFuV8PDaqkrK3bbulJQCJYm2CoNVUraDUVIGeqvCEExmEBMIAMEYoCkE5NQM8n42T/O94TL5M79NffOvefO+/l43Mc9c873e87nHIb55PvjnKOIwMzMrBsc1O4AzMzMmsVJzczMuoaTmpmZdQ0nNTMz6xpOamZm1jUObncA3e6oo46KU045pd1hNGT37t0cdthh7Q6jYUWOf9u2bQwODnLssce2O5SGFfn6g+Nvp0cfffTliJjYSF0ntRabNGkSq1evbncYDent7WXWrFntDqNhRY5/yZIl9Pf3c/XVV7c7lIYV+fqD428nSc80Wtfdj2Zm1jWc1MzMrGs4qZmZWddwUjMzs65RiKQm6UJJ6yVtlLSozHZJujFtXyPpzGp1JU2QdL+kDen76LT+jZIelLRL0k1DjtOb9vVY+hR3apqZWRfq+KQmaRxwMzAbmAFcImnGkGKzgenpsxD4fA11FwErI2I6sDL9DPAT4GPAHw0T0vsi4oz0ebEJp2hmZk3S8UkNOBvYGBFPR8QAcCcwd0iZucAdkVkFHCVpcpW6c4GlaXkpcDFAROyOiG+QJTczMyuQItynNgV4ruTnzcA5NZSZUqXupIjYAhARW+roSvwbSYPAV4BPRpl390haSNZiZOLEifT29ta4686ya9euwsYOxY6/v7+fwcHBwsYPxb7+4PjbZedAMO7wCZMarV+EpKYy64YmkuHK1FK3Hu+LiOclHUGW1H4HuOOAA0QsBhYD9PT0RFFvgCzyzZtQ7Pj7+vro7+8vbPxQ7OsPjr9dbn3oKcYdPmFqo/WL0P24GTih5OepwAs1lqlUd2vqoiR9Vx0fi4jn0/dO4Etk3ZtmZtYk82aewOCu7ZsbrV+EpPYIMF3SNEnjgfnA8iFllgOXplmQ5wI7UtdipbrLgQVpeQFwT6UgJB0s6Zi0/DrgIuAHIz89MzPLTThsPIO7tm9ttH7Hdz9GxD5JVwL3AeOA2yNiraTL0/ZbgBXAHGAj8ArwgUp1065vAJZJugx4FpiXH1NSH3AkMF7SxcCvAM8A96WENg54ALitleduZmb16fikBhARK8gSV+m6W0qWA7ii1rpp/Tbg/GHqnDhMKGfVFrGZmdVr++4B7lr9HBw0ruHcVITuRzMzGwPuWv0cn7r3Sca9/g1vbHQfhWipmZlZ95s3M5vXd/n/2bGt0X24pWZmZh1hwmHj+b13nAw/HdzX6D6c1MzMrGs4qZmZWddwUjMzs7bavnuAWx96iu27B0a8Lyc1MzNrq3zW412rn6teuArPfjQzs7bKZz3m3yPhpGZmZm21f9ZjE7j70czMuoaTmpmZtUUzJ4jknNTMzKwtmjlBJOcxNTMza4tmThDJOamZmVlbNHOCSM7dj2Zm1jWc1MzMbNS1YpIIOKmZmVkbtGKSCHhMzczM2qAVk0TASc3MzNqgFZNEwN2PZmbWRZzUzMxs1LRqgkjOSc3MzEZNqyaI5DymZmZmo6ZVE0RyTmpmZjZqWjVBJOfuRzMz6xpOamZm1nKtniCSK0RSk3ShpPWSNkpaVGa7JN2Ytq+RdGa1upImSLpf0ob0fXRa/0ZJD0raJemmIcc5S9LjaV83SlIrz9vMrFu0eoJIruOTmqRxwM3AbGAGcImkGUOKzQamp89C4PM11F0ErIyI6cDK9DPAT4CPAX9UJpzPp/3nx7qwCadoZtb15s08gWtnn9qyCSK5jk9qwNnAxoh4OiIGgDuBuUPKzAXuiMwq4ChJk6vUnQssTctLgYsBImJ3RHyDLLntl/Z3ZER8OyICuCOvY2ZmleUTRCYcNr6lxynC7McpQGl7dTNwTg1lplSpOykitgBExBZJx9YQx+YyxziApIVkLTomTpxIb29vlV13pl27dhU2dih2/P39/QwODhY2fij29QfHX1RFSGrlxq2ixjK11G1mHNnKiMXAYoCenp6YNWtWg4dsr97eXooaOxQ7/r6+Pvr7+wsbPxT7+oPjb6btuwe4a/VzzJt5QstbakXoftwMlHbCTgVeqLFMpbpbU5di3rX4Yg1xTK0Sh5mZDTFak0SgGEntEWC6pGmSxgPzgeVDyiwHLk2zIM8FdqSuxUp1lwML0vIC4J5KQaT97ZR0bpr1eGm1OmZmNnqTRKAA3Y8RsU/SlcB9wDjg9ohYK+nytP0WYAUwB9gIvAJ8oFLdtOsbgGWSLgOeBeblx5TUBxwJjJd0MfArEbEO+CCwBDgUuDd9zMysglY/RaRUxyc1gIhYQZa4StfdUrIcwBW11k3rtwHnD1PnxGHWrwZ+vta4zcxsdBWh+9HMzApotJ4iUspJzczMWmI0J4jkCtH9aGZmxdPq18yU46RmZmYtMZoTRHLufjQzs6Zqx1hazknNzMyaqh1jaTl3P5qZWVO1Yywt56RmZmZN1Y6xtJy7H83MrGs4qZmZWdO0c5IIOKmZmVkTtXOSCHhMzczMmqidk0TASc3MzJqonZNEwN2PZmbWRWpuqUmaUEOxn0ZE/wjiMTOzAtq+e4C7Vj/HvJknMOGw8W2Lo57uxxfSRxXKjAN+ZkQRmZlZ4eQTRIC2dj/Wk9SeiIg3Vyog6XsjjMfMzAqo3RNEcvUktbcOXSFpMCLGVSpjZmbdr90TRHI1TxSJiJ+UWa0aypiZmY2KEc9+lPTbkv5I0pGSLmxGUGZmVgztfoLIUM2Y0n8y8HngDwEnNTOzMaTdTxAZqhk3X6+OiN2S/hT4aBP2Z2ZmBdEpE0RyI22pRUTcmy8Ad0uaLWnqyEMzM7NOl08Qaee9aaXqSmqSDpH0lgpF/gQ4AlgoaemIIjMzM6tT1e5HSdcApwNHATOAvwUeGab4AxGxDFjWtAjNzKwjdcpTRErV0lI7hyxZ/TrwrxHxvyqUfZukr0q6TdIfNidEMzPrRJ02SQRqSGoRMR/YKemLwKQqxX8QEb8BfBBY2YT4AJB0oaT1kjZKWlRmuyTdmLavkXRmtbqSJki6X9KG9H10ybZrU/n1kt5dsr43rXssfY5t1jmamRXNvJkncO3sUztmkgjUOKYWEcuB3wW+K+m2CkUvkvT7wEkR8f1mBChpHHAzMJus+/MSSTOGFJsNTE+fhWS3GFSruwhYGRHTyRLwolRnBjAfOI3sFoXPpf3k3hcRZ6TPi804RzOzIuq0SSJQ3xNF9kTEJ4FPVCj2XmAD8BtVkl89zgY2RsTTETEA3AnMHVJmLnBHZFYBR0maXKXuXCCfzLIUuLhk/Z3pfDcBG9N+zMysw9V9n1pEVOo8nRcRNwH/UtqdN0JTgNJjbiYb56tWZkqVupMiYgtARGwp6UqcAqwqs6/c30gaBL4CfDLdyvAakhaStRiZOHEivb29VU6xM+3atauwsUOx4+/v72dwcLCw8UOxrz84/kp2DgRff34v5015HUeMr/TiltHX7Ddfv6lkeRHwkSbss9wVG5pIhitTS916jve+iHhe0hFkSe13gDsOKByxGFgM0NPTE7NmzapyyM7U29tLUWOHYsff19dHf39/YeOHYl9/cPyV3PrQUyxb/yQnn3RyRzzEuFSzk9pBks4Dvgm8sUn73AyUjkJOJXuvWy1lxleou1XS5NRKmwzk42PDHi8ink/fOyV9iaxb8oCkZmbWzTrtKSKlRvpEkaGtmg8DvwjcBtwzwn3nHgGmS5omaTzZJI7lQ8osBy5NsyDPBXakrsVKdZcDC9LygpJ4lwPz043m08gmnzws6WBJxwBIeh1wEfCDJp2jmVlhdOIEkdyIWmoRcdCQnweBm0YU0YHH2CfpSuA+sjdr3x4RayVdnrbfAqwA5pBN6ngF+EClumnXNwDLJF0GPAvMS3XWSloGrAP2AVdExKCkw4D7UkIbBzxAlrzNzMaETrzZeqiak5qk70bEmSMt04iIWEGWuErX3VKyHMAVtdZN67cB5w9T53rg+iHrdgNn1Ru7mVm3yG+2BjpuLC1XT0vt5yStqbBdwBtGGI+ZmXWoTh5Ly9WT1E6tocxgo4GYmVlny8fSOlnNSS0inmllIGZmZiPVjDdfm5lZl9u+e4BbH3qK7bsH2h1KRU5qZmZWVSc+kb+cZt98bWZmXagIk0SgjpaapG+k752Sfjzks0PSJkkfal2oZmbWLp18w3Wpep7S//b0fUREHDnk8wZgJnBVqwI1M7PRV5SxtFzTxtTSzcyzmrU/MzNrv6KMpeWaOqaWv8rFzMy6Q1HG0nKeKGJmZsMqwg3XperufkxPwv+vkj6efv4ZSX4ztJmZtV0jY2qfA94KXJJ+3gnc3LSIzMys7Yo2QSTXSFI7JyKuAH4CEBH/TvYyTjMz6xJFmyCSa2RMba+kcUAASJoI/LSpUZmZWVsVbYJIrpGkdiNwN3CspOuB3wQ+1tSozMysrYo2QSRXd1KLiL+T9CjZCzYFXBwRTzQ9MjMza4sivOF6OI3Mfvx0RDwZETdHxE0R8YSkT7ciODMzG31FHU+DxiaKvKvMutkjDcTMzDrDvJkncO3sUws3ngZ1dD9K+iDwIeAkSWtKNh0BfLPZgZmZWXsUdTwN6htT+xJwL/ApYFHJ+p0Rsb2pUZmZmTWg5qQWETuAHbx607WZmXWRIk8QydU9+1HSIcB7gBNL60fEJ5oXlpmZjbZ8gggwJrofc/eQtdgeBfY0NxwzM2uXot5wXaqRpDY1Ii5seiRmZtZWRZ4gkmtkSv+3JP1C0yMxM7O2KOrDi8upOalJejxN5X878F1J6yWtKVnfMpIuTMfbKGlRme2SdGPavkbSmdXqSpog6X5JG9L30SXbrk3l10t6d8n6s9L5bkzHUyvP28xsNBT5Zuuh6ul+vKhlUVSQHp58M9lN35uBRyQtj4h1JcVmA9PT5xzg88A5VeouAlZGxA0p2S0CPiJpBjAfOA04HnhA0s9GxGDa70JgFbACuJDsNgczs8LqhrG0XD1T+p8BkLQUuCoi+tPPRwN/Afy3lkQIZwMbI+LpdLw7gblAaVKbC9wREQGsknSUpMlkMzSHqzsXmJXqLwV6gY+k9XdGxB5gk6SNwNmS+oAjI+LbaV93ABdTJam98sorLFmyZASn3z79/f309fW1O4yGFTn+H/3oR+zbt6+wvztQ7OsPYy/+Q4Dlm1oWzqhpZKLI6XlCg+x9apLe3MSYhpoClLaJN5O1xqqVmVKl7qSI2AIQEVskHVuyr1Vl9rU3LQ9dfwBJC8ladBx33HH09/eXK9bxBgcHCxs7FDv+ffv2ERGFjR+Kff1h7MT/Hz89iLX/cSSnHfpjDj2o+G8RaySpHSTp6PRyUCRNaHA/tSo3bhU1lqmlbq3Hq3lfEbEYWAzQ09MTV199dZVDdqbe3l5mzZrV7jAaVuT4lyxZQn9/P0X93YFiX38YO/Hf+tBTfOPeJznv7ed1zMzHa665puG6jSSjvyCbAfkPZH/Ufwu4vuEIqtsMlHb0TgVeqLHM+Ap1t0qanFppk4EXq+xrc1quFIeZWaF003gaNDClPyLuIHsx6FbgJeA3IuKLzQ6sxCPAdEnTJI0nm8SxfEiZ5cClaRbkucCO1LVYqe5yYEFaXkB2U3m+fr6kQyRNI5t88nDa305J56ZZj5eW1DEzK6T83rSiPhZrqIa6DSNiLbC2ybEMd6x9kq4E7gPGAbdHxFpJl6ftt5DNRJwDbAReAT5QqW7a9Q3AMkmXAc8C8/Jzk7SMbDLJPuCKNPMR4IPAEuBQsgkinvloZtZB6nn1zDci4u2SdvLasSQBERFHNj26JCJWkCWu0nW3lCwHcEWtddP6bWRv7y5X53rKdKlGxGrg5+uJ3cysE3XDw4vLqWdK/9vT9xGtC8fMzEZDNzy8uJx6Wmp/WGl7RPzlyMMxM7PR0G0TRHL1jKnlLbQe4C28OuHiV4F/a2ZQZmbWWt3w8OJy6ul+/FMASV8DzoyInenn64C7WhKdmZk1VbeOpeUaeUr/zwClj3IeIHsclZmZdbhuenhxOY1M6f8i8LCku8lmQf462bMTzcysw3XrWFqu7qQWEddL+heyV9AAfCAivtfcsMzMrBW6dSwt1+jN148CjzY5FjMza6FuH0+DBpKapJnAR4E3pfr5zdenNzk2MzNrom69N61UIy21vwP+J/A4UPz3FJiZjRHdPp4GjSW1lyJi6AOFzcysw3X7eBo0ltT+RNIXgJXAnnxlRHy1aVGZmVnTjIWxtFwjSe0DwKnA63i1+zEAJzUzsw40FsbSco0ktV+MiF9oeiRmZtYSY2EsLdfIE0VWSZrR9EjMzKwluu1FoJU0ktTeDjwmab2kNZIel7Sm2YGZmdnIbN89wK0PPcX23QPVC3eJRrofL2x6FGZm1nRjaSwt18hjsp6R9IvAeWnV1yPi+80Ny8zMRmosjaXl6u5+lHQV2Q3Yx6bP30r6/WYHZmZmIzOWxtJyjYypXQacExEfj4iPA+cC/725YZmZ2UjsHIgxN54GjY2pCRgs+XkwrTMzsw7x9ef3smz92BpPg8aS2t8A30nvUwO4GPjr5oVkZmYjdd6U13HySSePqfE0qDOpSRJwF9BLNrVf+H1qZmYd54jxGlMttFxdSS0iQtI/RsRZwHdbFJOZmTUof87j8QPR7lDaotEniryl6ZGYmdmI5femff35ve0OpS0aGVN7J/B7kp4BduOXhJqZdYx8DO34Pc+2OZL2aKSlNhs4Gfhl4FeBi9J300maIOl+SRvS99HDlLswPbZro6RFtdSXdG0qv17Su0vWn5Ue/bVR0o1pHBFJ75f0kqTH0ud3W3HOZmaNyB+JBdlsxyPGj81J6Y0ktQ9FxDOlH+BDzQ4sWQSsjIjpZO9vWzS0gKRxwM1kyXYGcEnJA5fL1k/b5wOnkT3263NpPwCfBxYC09On9LFgfx8RZ6TPF5p6pmZmI5B3O961+rl2h9JWjSS1d5VZN3ukgQxjLrA0LS8lu31gqLOBjRHxdEQMAHemepXqzwXujIg9EbEJ2AicLWkycGREfDsiArhjmGOamXWUeTNP4NrZp465KfxD1TymJumDZC2yk0qeyi/gcOCbLYgNYFJEbAGIiC2Sji1TZgpQ+k+TzcA5VepPAVYNqTMF2JuWh67PvUfSLwE/BK6JiLL/JJK0kKy1x8SJE+nt7a12nh1p165dhY0dih1/f38/g4ODhY0fin39oZjx9wBrHsn+LBUx/maoZ6LIl4B7gU/x2m7AnRGxvdEAJD0AHFdm00dr3UWZddXmsg5Xp9K+/gn4ckTskXQ5Wcvvl8vtPCIWA4sBenp6YtasWVXC6Uy9vb0UNXYodvx9fX309/cXNn4o9vWHYsWfT+OfN/OE/c95LFL8zVRPUvtZ4LmIuARA0qXAe4BnJF3XaGKLiAuG2yZpq6TJqZU1GXixTLHNQGl7eyrwQloerv5wdTan5QP2FRHbStbfBny66smZmY2CsfiKmeHUM6Z2KzAAkLrgbiAbc9pBapW0wHJgQVpeANxTpswjwHRJ0ySNJ5sAsrxK/eXAfEmHSJpGNiHk4dRVuVPSuWnW46V5nZQUc78GPNGMEzQzGymPp72qnpbauJLW2HuBxRHxFeArkh5rfmhAljiXSboMeBaYByDpeOALETEnIvZJuhK4DxgH3B4RayvVj4i1kpYB64B9wBURkT+k+YPAEuBQsu7We9P6P5D0a6n8duD9LTpnM7OalHY7jvUWWq6upCbp4IjYB5xPmgjRwH5qlrr8zi+z/gVgTsnPK4AVtdZP264Hri+zfjXw82XWXwtcW0f4ZmYt5W7HA9WTjL4MPCTpZeA/gK8DSDqFrAvSzMxG0Vh8s3U1NSe1iLhe0kpgMvC1dB8XZONyfvO1mdkoy99sba+q9yn9q8qs+2HzwjEzs2rKTeG3TCNPFDEzszbyI7GG15IJHmZm1joeSxueW2pmZgXirsfKnNTMzArEXY+VufvRzKxA3PVYmVtqZmYFMPQloO56LM9JzcysANztWBt3P5qZFYC7HWvjlpqZWQdzt2N9nNTMzDqYux3r4+5HM7MO5m7H+rilZmbWoXyjdf2c1MzMOpS7Huvn7kczsw7lrsf6uaVmZtZhPOOxcU5qZmYdxt2OjXP3o5lZh8gnhlwwYxLgbsdGOKmZmXWIvIUGWbej1c9JzcysQ3hiyMh5TM3MrAP4nrTmcFIzM+sAnhzSHO5+NDNrI08Oaa6ObqlJmiDpfkkb0vfRw5S7UNJ6SRslLaqlvqRrU/n1kt5dsv56Sc9J2jXkGIdI+vtU5zuSTmz+GZvZWJO30B5Yt9X3pDVBRyc1YBGwMiKmAyvTz68haRxwMzAbmAFcImlGpfpp+3zgNOBC4HNpPwD/BJxdJpbLgH+PiFOAzwCfbsoZmtmYlN9gfcGMSVw7+1S30Jqk05PaXGBpWl4KXFymzNnAxoh4OiIGgDtTvUr15wJ3RsSeiNgEbEz7ISJWRcSWKrH8A3C+JDV8ZmY2prmF1hqdPqY2KU8wEbFF0rFlykwBSkdWNwPnVKk/BVg1pM6UKrHsP05E7JO0A3gj8HId52NmY5zH0Fqr7UlN0gPAcWU2fbTWXZRZF+2sI2khsBBg4sSJ9Pb2Vtl1Z9q1a1dhY4dix9/f38/g4GBh44diX39oXfwrNg2wbP1ennr6KeZMG8+aR1oz27Ho179RbU9qEXHBcNskbZU0ObWyJgMvlim2GSj9p85U4IW0PFz9SnWGk9fZLOlg4A3A9mHOaTGwGKCnpydmzZpVZdedqbe3l6LGDsWOv6+vj/7+/sLGD8W+/tCa+LfvHuB7ezdx1VSx4G0ntrTLsejXv1GdPqa2HFiQlhcA95Qp8wgwXdI0SePJJoAsr1J/OTA/zWicBkwHHq4jlt8E/jUiqrXuzMz2u2v1c3x25UZeP36cx9BapO0ttSpuAJZJugx4FpgHIOl44AsRMSeNb10J3AeMA26PiLWV6kfEWknLgHXAPuCKiBhM+/4z4LeB10vanI5zHfDXwBclbSRroc1v/embWTfwONro6eikFhHbgPPLrH8BmFPy8wpgRa3107brgevLrP8w8OEy639CSopmZvXwg4pHT0cnNTOzInMLbfQ5qZmZtcD23QP8j2WP8eD6lwC30EZLp08UMTMrpLtWP8eD61/inT0T3UIbRW6pmZk1UbkuR890HD1OamZmTZAns1cGBvnsyg2Auxzbwd2PZmYjlI+fZTMcww8obiO31MzMGlTaOsvHzxa8bZq7G9vISc3MrE5DuxqvOv+U/a0zJ7T2clIzM6tD6VR9J7PO46RmZlYDdzUWg5OamVkF7mosFic1M7NhuKuxeJzUzMzIEtjSb20CxK+dcTwrNg3wvb197mosGCc1MxszSp/2sfyx58kT2APrtqbuxY0ArNncz4Pr93LV1HDrrGCc1MyskPIENVzCKZfAAD67cgOrnt62/0HDWQLLuhevOv8U8kQ3kW+5dVZATmpmVkj5O8pWPb2NP75oBg+s21o1geXjYhfMmMTpU19tqZ170tYDkuOcaeOd0ArISc3MOkJpywvY38oamqzy7sILZkwqSVjreHD9S1UT2IK3nbg/UV3zrp79xz75HYeP8tlaqziptVj/nuAz9//wNf8jPrDuwH8V5kq7TPJywLDjAOXWle670hhCtT8Yd2/Yw/f2/rDisVq5Lv8DNHQAv9x1Kbe/FZsGOOG0XTUfd7j91vNHttbzKddtNvSP+tB19bQaKiWI4X6nKl3vRs73uD0/5daHnqr5mkHWsnplYB9rNu94TZIq110I8Be/dcb+8zj3pK01JTDrbk5qLda/J/jsyg37/0cs/Z+0li6TVU9v4/SpRw07DlBu3SsD+9LRK48hVPqDserpbTz41D546sDYqx2/WesgeP34g8sM4L9U4x++vbyU/gVf63HLXe/h1o3sfDYc8DvwyX9et//c1m07lMmxa/908lcG9vH68QfXnFxKj1HL+VS73o2c7+kTD2LNS0/WfM3yllXpzc1/fNGMA5LV0O7C/En4eWvLCWxsc1JrsaMOEVedP33//4jZO5byP7SVu0zy7adPfcOw4wDl1pW++qLSGEK5f92Wbjty3zc58cRpFY/VynUAn7r3yQMG8PNzrPaHbyLf4vcumlHzcctd73LrmnE+7+yZWPZ34J09EwFx/0uHc+Ih0Pfyq+vy8aNakkvpMaqdTy3Xu5HzPW7PZv7LzDfVfM1KW4qvHz9uf9Iql6zcXWjDUUS0O4au1tPTE+vXr3/NuqFdjOW6gErLNdL1lHcfle6vXr29vcyaNauhus1Q6fxruTb1xl9un43+N6i2fziwO7O0a/Ajt9zN5HiJKW+Z3XAXdF6n1vNp5rlC+39/Rsrxt4+kRyNiZkN1ndRaq1xSK4oi/08BxY5/yZIl9Pf3c/XVV7c7lIYV+fqD42+nkSQ1vyTUzMy6hpOamZl1DSc1MzPrGk5qZmbWNZzUzMysazipmZlZ13BSMzOzruH71FpM0k6gmDeqwTHAy+0OYgQcf3s5/vYqcvw9EXFEIxX9mKzWW9/oTYTtJml1UWMHx99ujr+9ihy/pNWN1nX3o5mZdQ0nNTMz6xpOaq23uN0BjECRYwfH326Ov72KHH/DsXuiiJmZdQ231MzMrGs4qZmZWddwUmsySfMkrZX0U0nDTqeV1CfpcUmPjWT6ajPVEfuFktZL2ihp0WjGWImkCZLul7QhfR89TLmOuvbVrqcyN6btaySd2Y44h1ND/LMk7UjX+zFJH29HnOVIul3Si5J+MMz2Tr/21eLv5Gt/gqQHJT2R/u5cVaZM/dc/Ivxp4gf4OaAH6AVmVijXBxzT7njrjR0YBzwFnASMB74PzGh37Cm2PwMWpeVFwKc7/drXcj2BOcC9gIBzge+0O+46458F/HO7Yx0m/l8CzgR+MMz2jr32Ncbfydd+MnBmWj4C+GEzfrwrXVsAAAWjSURBVPfdUmuyiHgiIgr5BJEaYz8b2BgRT0fEAHAnMLf10dVkLrA0LS8FLm5jLLWq5XrOBe6IzCrgKEmTRzvQYXTy70NVEfFvwPYKRTr52tcSf8eKiC0R8d20vBN4ApgypFjd199JrX0C+JqkRyUtbHcwdZgCPFfy82YO/EVsl0kRsQWy/2GAY4cp10nXvpbr2cnXvNbY3irp+5LulXTa6ITWFJ187WvV8dde0onAm4HvDNlU9/X3Y7IaIOkB4Lgymz4aEffUuJv/HBEvSDoWuF/Sk+lfXS3VhNhVZt2o3RdSKf46dtOWaz+MWq5nW695FbXE9l3gTRGxS9Ic4B+B6S2PrDk6+drXouOvvaTDga8AV0fEj4duLlOl4vV3UmtARFzQhH28kL5flHQ3WTdOy/+wNiH2zcAJJT9PBV4Y4T5rVil+SVslTY6ILamL4sVh9tGWaz+MWq5nW695FVVjK/1DFRErJH1O0jERUYSH7Xbyta+q06+9pNeRJbS/i4ivlilS9/V392MbSDpM0hH5MvArQNnZSx3oEWC6pGmSxgPzgeVtjim3HFiQlhcAB7Q8O/Da13I9lwOXpplg5wI78m7WDlA1fknHSVJaPpvs7862UY+0MZ187avq5Guf4vpr4ImI+MthitV//ds9A6bbPsCvk/3rYg+wFbgvrT8eWJGWTyKbJfZ9YC1Z118hYk8/zyGbqfRUp8Se4nojsBLYkL4nFOHal7uewOXA5WlZwM1p++NUmFXbofFfma7194FVwNvaHXNJ7F8GtgB70+/+ZQW79tXi7+Rr/3ayrsQ1wGPpM2ek19+PyTIzs67h7kczM+saTmpmZtY1nNTMzKxrOKmZmVnXcFIzM7Ou4aRm1mKSPpqeQr4mPSn9nHbHNBKSTpS0WdJBQ9Y/lu6FKl13naTnJX2iWj1J10h6VtJNo3Ee1p38RBGzFpL0VuAisqeR75F0DNnT7AsrIvokPQecBzwEIOlU4IiIeLhMlc9ExJ+ncpXqPSzp34FhX3tkVo1bamatNRl4OSL2AETEy5Ee06XsvW6flvRw+pyS1v+qpO9I+p6kByRNSuuvU/b+rF5JT0v6g7T+RGXvpLottQi/JunQtK1X6d14ko6R1JeW3y/pq5L+Rdn75/4sD1jSZZJ+mOreNkzL6ctkTw/JzU/rqmm0nllNnNTMWutrwAkpSXxO0juGbP9xRJwN3AT837TuG8C5EfFmsle5fLik/KnAu8meV/kn6dl5kD2k9uaIOA3oB95TQ2xnAO8FfgF4r7KXNh4PfIzs3VXvSscrZxlwsaS8t+e9KdZqGq1nVhN3P5q1UGRPRz+LrMvtncDfS1oUEUtSkS+XfH8mLU9N5SaTdVVuKtnl/0utvj2SXgQmpfWbIuKxtPwocGIN4a2MiB0AktYBbwKOAR6KiO1p/V3Az5Y5rx9JWgucL2krsDciqj5Ds9F6ZrVyUjNrsYgYJHubeK+kx8ketrwk31xaNH3/FfCXEbFc0izgupIye0qWB3n1/+Gh6w9Ny/t4tUfmPw0Jrdy+yr3qYzh5V+JW6utCbLSeWVXufjRrIUk9kkrfX3UG8EzJz+8t+f52Wn4D8HxaXsDI9AFnpeXfrKH8w8A7JB2duggrdWN+hewBtPV2ITZaz6wqt9TMWutw4K8kHUXWatoIlL5t+xBJ3yH7B+Ylad11wF2Snid7svq0ERz/z4Flkn4H+NdqhSPieUn/m+wNxC8A64Adw5Ttl7SK7I3jm8qVaWY9s1r4Kf1mbZJmIs6MDnlhY07S4Wks8GDgbuD2iLi7wX1dB+zKp/TXUP79ZNfkykaOZ+buRzMb6jpJj5G9PHUT8I8j2NcuYKGkT1QrKOka4Frgx9XKmg3HLTUzM+sabqmZmVnXcFIzM7Ou4aRmZmZdw0nNzMy6hpOamZl1jf8PyI2zRnMZNV4AAAAASUVORK5CYII=\n" + ], + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": [ + "iVBORw0KGgoAAAANSUhEUgAAAbUAAAEGCAYAAADi9AsGAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3df5xW5X3n/9dbCDb+ihIREdJIEMdi6mp00Zh0mTyAr8AjCXYbDfaRb2i+bklS3TUm2wQedlv7g43JNslqo6kkzVfstmGxbcJsF2OEOm5aJYKJwYISBhjDBIoWOhawZWD87B/nDB6G+/fcN/d97nk/H4953Oe+znWd+ZyTCR+v61znOooIzMzM2sFpzQ7AzMysXpzUzMysbTipmZlZ23BSMzOztuGkZmZmbWNsswNod+eee25ccsklzQ6jJocPH+bMM89sdhg1y3P8+/fvZ3BwkAsuuKDZodQsz9cfHH8zPfvss/8YERNqaeuk1mATJ05k06ZNzQ6jJt3d3XR2djY7jJrlOf6HHnqI/v5+PvWpTzU7lJrl+fqD428mSS/V2tbDj2Zm1jac1MzMrG04qZmZWdtwUjMzs7bhpGZmZm3DSc3MzNpGLpKapHmStknqkbS0wH5Jui/dv1nSu8q1lTRe0uOStqef52X2LUvrb5N0Q1p2hqT/LelFSVsk3dPo8zYzs+q0fFKTNAa4H5gPzABukTRjWLX5wPT0ZwnwtQraLgXWR8R0YH36nXT/IuByYB7wQHocgD+MiMuAq4D3SJpf/zM2Mxu9DhweYMxZ4yfW2r7lkxowE+iJiJ0RMQCsAhYOq7MQeDgSG4BzJU0q03YhsDLdXgncmClfFRFHImIX0APMjIjXIuIJgPRYPwSmNOKEzcxGq0c27WbMWeNr/rc1DyuKTAZ2Z773AddWUGdymbYTI2IvQETslTS0HtFkYEOBYx0n6VzgA8C9hQKWtISkx8iECRPo7u4ufnYt7NChQ7mNHfIdf39/P4ODg7mNH/J9/cHxN8PBgWDrSwMMHu7fU+sx8pDUVKBs+Ou6i9WppG1Vv0/SWOBbwH0RsbPQASJiBbACoKOjI/K6VE2el9mBfMff29tLf39/buOHfF9/cPyn0oHDAzyyaTevaZA1O7ZDvP56rcfKw/BjH/C2zPcpwPAsXqxOqbb70iFK0s+XK/x9K4DtEfHfqz4TMzM7ySObdvP5R18EgmXzL2PwtVf313qsPPTUNgLTJU0FfkYyieNXh9XpAm6XtIpkePHVdEjxlRJtu4DFwD3p55pM+Z9L+jJwEcnkk2cAJP0B8BbgPzTiRM3MRpOhHtqcGcm8kJuueRvjzxzHJ14fPFbrMVs+qUXEMUm3A48BY4BvRsQWSZ9I9/8xsBZYQDKp4zXgY6Xapoe+B1gt6Vbgp8BNaZstklYDW4FjwG0RMShpCnAX8CLwQ0kAX42IbzT8IpiZtZkDhwf4zOrneGLbKwB8fNa0uhy35ZMaQESsJUlc2bI/zmwHcFulbdPy/cDsIm2WA8uHlfVR+H6bmZlV6ZFNu3li2yu8r2MCN13ztvINKpSLpGZmZu2h2JBjvTipmZlZwx2f4TgwyL3rtwP1G3LMysPsRzMzy7nhMxzrOeSY5Z6amZk11IHDA7w2cIw7Zk9n8fUX13W4cTj31MzMrCEOHB7gwSd3sPKpXu5d38MZ48Y0NKGBk5qZmTXIqRpyzPLwo5mZ1VWjZziW4qRmZmZ106iHqivlpGZmZiOWnbLfiIeqK+V7amZmNmLD75996eYrT9mQY5Z7amZmVrNm3j8rxEnNzMxq0uz7Z4V4+NHMzGrSqEWJR8I9NTMzq0qrDTlmOamZmVlFTtWixCPh4UczM6tIM1YIqZZ7amZmVtapXJR4JNxTMzOzopqxKPFI5CKpSZonaZukHklLC+yXpPvS/ZslvatcW0njJT0uaXv6eV5m37K0/jZJN2TKr5b0fLrvPklq5HmbmTVbHoYcs1p++FHSGOB+YC7QB2yU1BURWzPV5gPT059rga8B15ZpuxRYHxH3pMluKfA5STOARcDlwEXAOkmXRsRgetwlwAZgLTAPeLSxV8DM7NRr5RmOpbR8UgNmAj0RsRNA0ipgIZBNaguBhyMigA2SzpU0Cbi4RNuFQGfafiXQDXwuLV8VEUeAXZJ6gJmSeoFzIuLp9FgPAzdSJqm99tprPPTQQyM4/ebp7++nt7e32WHULM/x/8M//APHjh3L7d8O5Pv6w+iO//Ax8Z29Z7P98Ols2rSJ97z1X+jaVd/4GiUPSW0ysDvzvY+kN1auzuQybSdGxF6AiNgr6YLMsTYUONbRdHt4+UkkLSHp0XHhhRfS399f4vRa1+DgYG5jh3zHf+zYMSIit/FDvq8/jO74Nx0+l+2HT+fi0w/xDu2jv//1OkfXOHlIaoXuW0WFdSppW+nvq/hYEbECWAHQ0dERn/rUp8r8ytbU3d1NZ2dns8OoWZ7jf+ihh+jv7yevfzuQ7+sPozP+oSHH350xkXVb9zVtyPHOO++suW0eklofkL0zOQXYU2GdcSXa7pM0Ke2lTQJeLnOsvnS7VBxmZrmTh4eqK5WH2Y8bgemSpkoaRzKJo2tYnS7go+ksyOuAV9OhxVJtu4DF6fZiYE2mfJGk0yVNJZl88kx6vIOSrktnPX4008bMLLfyNsOxlJbvqUXEMUm3A48BY4BvRsQWSZ9I9/8xyUzEBUAP8BrwsVJt00PfA6yWdCvwU+CmtM0WSatJJpMcA25LZz4CfBJ4CHgzyQQRz3w0s1zLy0PVlWr5pAYQEWtJEle27I8z2wHcVmnbtHw/MLtIm+XA8gLlm4B3VhO7mVkrOnHIsYdl8y/LfUKDfAw/mplZnbXTkGNWLnpqZmZWH3l9qLpSTmpmZqNEK76put48/GhmNkq04puq6809NTOzNtfuQ45ZTmpmZm2qnR6qrpSHH83M2lS7znAsxT01M7M2dHAgeE3t81B1pdxTMzNrI0Nvql730tFcvKm63pzUzMzayGgccszy8KOZWRsYPsPxoiM/5QNtPimkECc1M7OcK/RQdXf37jKt2pOTmplZTmWn7Lf7Q9WV8j01M7OcGn7/7Es3XzmqJoUU4p6amVnOjKYVQqrlpGZmliOjYVHikfDwo5lZjoyGRYlHwj01M7Mc8JBjZVq6pyZpvKTHJW1PP88rUm+epG2SeiQtraS9pGVp/W2SbsiUXy3p+XTffZKUln9a0lZJmyWtl/T2Rp67mRm8sULIyqd6+fyjL7Ju6z4+PmuaE1oRLZ3UgKXA+oiYDqxPv59A0hjgfmA+MAO4RdKMUu3T/YuAy4F5wAPpcQC+BiwBpqc/89LyHwHXRMQVwF8AX6zvqZqZnWy0rxBSrYqHHyWNr6Da6xHRP4J4hlsIdKbbK4Fu4HPD6swEeiJiJ4CkVWm7rSXaLwRWRcQRYJekHmCmpF7gnIh4Oj3Ww8CNwKMR8UTmd24APlKnczQzK+jA4QFeGxh9ixKPRDX31PakPypRZwzw8yOK6EQTI2IvQETslXRBgTqTgeyj833AtWXaTyZJTNk2k4Gj6fbw8uFuBR4tFrSkJSS9PSZMmEB3d3exqi3t0KFDuY0d8h1/f38/g4ODuY0f8n39obnxHxwIvv+zoxw5Bmt2HOXmjjexeeOeqo6R9+tfq2qS2gsRcVWpCpJ+VG0AktYBFxbYdVelhyhQFjW2KXssSR8BrgFmFTt4RKwAVgB0dHREZ2dnmXBaU3d3N3mNHfIdf29vL/39/bmNH/J9/aG58T/45A5Wb3uRO2ZfwrJLx9Y0KSTv179W1SS1dw8vkDQYEWNK1SknIuYU2ydpn6RJaS9rEvBygWp9QHaQeQpJjxKgWPtibfrS7ULHQtIckmQ7Kx26NDOrG89wHLmKJ4pExL8WKFYFdUaiC1icbi8G1hSosxGYLmmqpHEkE0C6yrTvAhZJOl3SVJIJIc+kQ5UHJV2Xznr86FAbSVcBDwIfjIhCydXMrGZDD1V7huPIjHj2o6RflfSfJZ0jaV75FlW5B5graTswN/2OpIskrQWIiGPA7cBjwAvA6ojYUqp9un81yWSS7wK3RcRg2uaTwDeAHmAHb9w7+2/AWcAjkp6TNJQ4zcxGzA9V10c9Hr6eBnwZ+E3gXJIkURcRsR+YXaB8D7Ag830tsLbS9um+5cDyAuWbgHcWKC86TGpmVisPOdZXPZLapog4LOl3qXxyh5nZqJZ9bcy967cDXsexHkY6/BgR8ejQBvBtSfMlTSnTzsxsVPND1Y1RVU9N0unAFRGxsUiV3yFZbWOJpLdHxOIi9czMRiUPNzZW2aQm6U7gCpL7ZTOA/0Ey47CQdRGxmmQShpmZZfi1MY1XyfDjtSTJ6peBv4mI3y9R93pJfyXp65I+XZ8Qzczag2c4Nl7ZnlpELJL0QUl/CpxZpvrfR8QfShpLsliwmdmo5yHHU6eie2oR0SXpMeA3JX09In69SNX3SzoCPBYRP65blGZmOeQZjqdeNSuKHImIPwB+r0S1DwPbgX8v6esjDc7MLM88w/HUq/o5tYjYXWL3TRHxVeC7xV7oaWY2Gvi1Mc1R75eEZt8GfdILPc3M2l32TdX3ru/hjHFjnNBOoXontdMk/ZKk04C31vnYZmYtz0OOzTXSZbKGv3/ssyQLAv8a8J0RHtvMLDc8w7E1jCipRcRpw74PAl8dUURmZjnjh6pbR8VJTdIPI+JdI61jZtYuslP2/VB1a6imp/YLkjaX2C/gLSOMx8wsN4bun90x+5Lj98885Nhc1SS1yyqoM1i+iplZvvn+WeuqOKlFxEuNDMTMLA98/6y11XtKv5lZW/OixK2tHm++NjNrex5yzIeW7qlJGi/pcUnb08+CS29Jmidpm6QeSUsraS9pWVp/m6QbMuVXS3o+3XefJA37XR+SFJKuacQ5m1lrya4Q8vlHX2Td1n18fNY0J7QWVXFSk/S36edBSf887OdVSbsk/Uad41sKrI+I6cB6Ciy9JWkMcD8wn+QlprdImlGqfbp/EcnrceYBD6THAfgasASYnv7My/yus4H/BPygvqdpZq3KK4TkSzWr9L83/Tw7Is4Z9vMW4BrgjjrHtxBYmW6vBG4sUGcm0BMROyNiAFiVtivVfiGwKn3zwC6gB5gpaRJwTkQ8HREBPDzsd/4+8EXgX+tydmbW0k5clHiqe2g5ULd7ahGxX1JnvY6XmhgRe9Pj75V0QYE6k4HsmwP6SN7WXar9ZGDDsDaTgaPp9vByJF0FvC0i/lrSfy4VtKQlJL09JkyYQHd3d7nzbEmHDh3KbeyQ7/j7+/sZHBzMbfyQ7+t/cCBYv/Mw397ezZodR7m5401s3rin2WFVJc/XfyTqOlFkKIFUQ9I64MICu+6q9BCFQqmxTcHydIHmr5CsaVlWRKwAVgB0dHREZ2dnJc1aTnd3N3mNHfIdf29vL/39/bmNH/J9/R98cgff6X2RO2a/nWWXjs3lpJA8X/+RaPrsx4iYU2yfpH2SJqW9rEnAywWq9QHZQe4pwNB/UhVrX6xNX7o9vPxs4J1Adzpv5EKgS9IHI2JThadqZi0uO8Nxx84dLL5+au6S2WhX9exHJT4i6bfT7z8vaWb9QwOgC1icbi8G1hSosxGYLmmqpHEkE0C6yrTvAhZJOl3SVJIJIc+kPc2Dkq5LZz1+FFgTEa9GxPkRcXFEXEwydOmEZtZGhh6qHprhuGDqOCe0HKplSv8DwLuBW9LvB0lmHzbCPcBcSduBuel3JF0kaS1ARBwDbgceA14AVkfEllLt0/2rga3Ad4Hb0jcMQPLqnG+QTB7ZATzaoHMzsxaQnbLvh6rzr5bhx2sj4l2SfgQQEf+U9pDqLiL2A7MLlO8BFmS+rwXWVto+3bccWF6gfBPJUGOpuDrLhG5mOeFFidtLLUntaPpMVwBImgC8XteozMwazCuEtKdaktp9wLeBCyQtBz4E/Je6RmVm1kBelLh9VZ3UIuLPJD1LMqwn4MaIeKHukZmZNYgXJW5fVSc1SV+IiM8BLxYoMzNrWR5ybH+1DD/OBYYnsPkFyszMWsJQMnttYJB7128HPOTYrqpZ0PiTkp4HOiRtzvzsAjY3LkQzs5HxosSjRzU9tT8neWbr85y4Wv7BiDhQ16jMzOrkxEWJL/ZwY5urOKlFxKvAq7zx0LWZWcs6ccixh2XzL3NCGwVqmShyOvArwMXZ9hHxe/ULy8xsZAo9VG3tr5aJImtIemzPAkfqG46Z2ch4huPoVktSmxIR88pXMzM7tfxQtdWS1J6S9IsR8XzdozEzq0H2/pkfqh7dKk5q6XT+SNt8TNJOkuFHARERVzQmRDOz0rwosQ2ppqf2/oZFYWZWA98/s+GqmdL/EoCklcAdEdGffj8P+BLw/zUkQjOzAnz/zAqp5SWhVwwlNEjepwZcVb+QzMzK86LEVkgtE0VOk3RemsyQNL7G45iZVc1DjlZKLcnoSyQzIP+CZOLIzRR4g7SZWT15UWKrRNXDjxHxMMmLQfcBrwD/PiL+tN6BQdILlPS4pO3p53lF6s2TtE1Sj6SllbSXtCytv03SDZnyqyU9n+67T5Iy+26WtFXSFkl/3ohzNrOTDd0/86LEVk4t99SIiC0R8dWI+KOI2FrvoDKWAusjYjqwnhMXUgZA0hjgfpLX38wAbpE0o1T7dP8i4HJgHvBAehyArwFLgOnpz7y0zXRgGfCeiLgc+FTdz9bMCsreP1t8/VQ+PmuahxytoGqeU/vbiHivpIMkw47Hd5E8p3ZO3aODhUBnur0S6Obk97bNBHoiYmca56q03dYS7RcCqyLiCLBLUg8wU1IvcE5EPJ0e62HgRpK3E/w6cP/QvcSIeLmuZ2pmJ/H9M6tWNVP635t+nt24cE4yMSL2pr93r6QLCtSZDOzOfO8Dri3TfjKwYVibycDRdHt4OcClAJL+DhgD3B0R3y0UtKQlJL09JkyYQHd3d/kzbUGHDh3KbeyQ7/j7+/sZHBzMbfwwsut/cCD4/s+OcuQYrNlxlB07d7Bg6jg2b9xdvnGd5PnvB/Iff62q6al9utT+iPhyLQFIWgdcWGDXXZUeolA4NbYpdayxJMORncAU4PuS3pl9vOF4g4gVwAqAjo6O6OzsLBNOa+ru7iavsUO+4+/t7aW/vz+38cPIrv+DT+5g9bZ0hZBLxzalh5bnvx/If/y1qmb241APrQP4t0BX+v0DwP+pNYCImFNsn6R9kialvaxJQKEhvz4ge8d4CrAn3S7WvlibvnS70LH6gA0RcZRkyHIbSZLbWMl5mlll/FJPG4mKJ4pExO9GxO8C5wPviojPRMRngKs5MRHUUxewON1eTPLam+E2AtMlTZU0jmQCSFeZ9l3AIkmnS5pKkpyeSYcqD0q6Lp31+NFMm+8A7wOQdD7JcOTO+pymmR04PMCDT+5g5VO93Lu+hzPGjXFCs6rVMvvx54GBzPcBkheGNsI9wFxJ24G56XckXSRpLUBEHANuBx4DXgBWR8SWUu3T/atJJpN8F7gtIgbTNp8EvgH0ADtIJomQHn+/pK3AE8BvRsT+Bp232aiRTWaesm8jVcvD138KPCPp2yT3m36ZZGZh3aVJY3aB8j3Agsz3tcDaStun+5ZT4KHxiNgEvLNAeQCfTn/MrE68wr7VU9VJLSKWS/ou8N606GMR8aP6hmVmo4Hvn1m91bRmY0Q8Czxb51jMbJQ4ccmrHpbNv8wJzeqi6ntqkq6R9G1JP5S0OV1SanMjgjOz9jQ05Oj7Z1ZvtfTU/gz4TeB54PX6hmNm7cwrhFij1ZLUXomIrvLVzMze4Jd62qlQS1L7HUnfIFkg+MhQYUT8Vd2iMrO2kb1/5pd6WqPVktQ+BlwGvIk3hh8DcFIzs5N4yr6dSrUktX8TEb9Y90jMrK0cHAgefHKH75/ZKVVLUtsgaUaD36NmZjk1NNy49aWjrNnxIuD7Z3bq1JLU3gsslrSL5J7a0PvUrqhrZGaWO9nJIAunjfV0fTvlaklq8+oehZm1hewbqudMPswH3EOzU6yWZbJekvRvgF9Ki74fET+ub1hmlieFnj/bvPGpJkdlo1HVSU3SHcCv88Zsx/8haUVE/FFdIzOzlnficlfbAd8/s+aq5dUztwLXRsRvR8RvA9eRJDkzG2W83JW1mlruqQkYzHwfTMvMbBTxCvvWimpJav8/8IP0fWoANwJ/Ur+QzKyVeYV9a2VVJTVJAh4Bukmm9gu/T81sVBh+/yy7QohZq6gqqUVESPpORFwN/LBBMZlZC/JyV5YHtUwU2SDp39Y9kgIkjZf0uKTt6ed5RerNk7RNUo+kpZW0l7Qsrb9N0g2Z8qvTd8T1SLov7Z0i6eclPSHpR+l75BY08tzNWsmJ98+m8vFZ05zQrCXVktTeBzwtaccpeEnoUmB9REwneSvA0uEVJI0B7gfmAzOAWyTNKNU+3b8IuJzkYfIH0uMAfA1YAkxPf4YeNv8tYHVEXJW2faC+p2rWeg4cHuDBJ3ew8qle7l3fwxnjxjiZWUurZaLI/LpHUdxCoDPdXklyL+9zw+rMBHoiYieApFVpu60l2i8EVkXEEWCXpB5gpqRe4JyIeDo91sMkE2EeJXkTwTnpsd4C7KnbWZq1GN8/s7yqJan9RkSckFgkfYGTk009TIyIvQARsVfSBQXqTAZ2Z773AdeWaT8Z2DCszWTgaLo9vBzgbuB7kv4jcCYwp1jQkpaQ9PaYMGEC3d3dpc+yRR06dCi3sUO+4+/v72dwcLBp8a/dNcDqbUdZOG0sN3e8iUtiD2eH2Lxxd/nGqTxff3D8eVVLUpvLyQlsfoGyikhaB1xYYNddlR6iQFnU2KbUsW4BHoqIL0l6N/Cnkt4ZEa+f1CBiBbACoKOjIzo7O8uE05q6u7vJa+yQ7/h7e3vp7+9vSvwHDg/wo6O7uGOKRvT8WZ6vPzj+vKo4qUn6JPAbwDsy99AEnAX8Xa0BRESpHs8+SZPSXtYk4OUC1fqA7JjIFN4YGizWvlibvnS70LFuJb2/FhFPS/o54PwiMZnljp8/s3ZQzUSRPwc+AHSlnx8A3g9cHREfaUBspL9rcbq9GFhToM5GYLqkqZLGkUzi6CrTvgtYJOl0SVNJJoQ8kw5VHpR0XTrr8aOZNj8FZgNI+gXg54BX6nOaZs2TnQziJa8s76oZfrwU2B0RtwBI+ijwK8BLku6OiAMNiO8eYLWkW0mSyk3p774I+EZELIiIY5JuBx4DxgDfjIgtpdpHxBZJq0kmkxwDbouIoaW/Pgk8BLyZZILIo2n5Z4CvS7qTZEjy1yKi3DCnWUvLvv/Mz59ZO6gmqT1IOjlC0r8jSRj/EbiS5P7Rh+odXETsJ+0dDSvfAyzIfF8LrK20fbpvObC8QPkm4J0FyrcC76kifLOWl33/2eLrpzqZWe5Vk9TGZHpjHwZWRMRfAn8p6bn6h2ZmjVLo/WdOaNYOqkpqksZGxDGS3s+SGo9jZk3i959Zu6tmosi3gCclrQH+Bfg+gKRLgFcbEJuZ1dHQ/TNPBrF2VnEPKyKWS1oPTAK+l5kkcRrJvTUza2G+f2ajQbWr9G8oUPaT+oVjZvXm+2c2mvhemFmb8v0zG41qWaXfzFqc75/ZaOWemlkb8v0zG62c1MzaiO+f2WjnpGbWBnz/zCzhe2pmOef7Z2ZvcE/NLKeyvTPfPzNLuKdmllOPbNp9Qu/sSzdf6YRmo557amY548kgZsU5qZnlSPb9Z+DJIGbDOamZ5UCh+2eeDGJ2Mt9TM8sB3z8zq4x7amYtzPfPzKrT0j01SeMlPS5pe/p5XpF68yRtk9QjaWkl7SUtS+tvk3RDpny5pN2SDg37HadL+p9pmx9Iurj+Z2z2hn95/bTjz5+t27qPj8+a5oRmVkZLJzVgKbA+IqYD69PvJ5A0BrgfmA/MAG6RNKNU+3T/IuByYB7wQHocgP8FzCwQy63AP0XEJcBXgC/U5QzNhjlweIC/2/9mnjt8ru+fmVWp1ZPaQmBlur0SuLFAnZlAT0TsjIgBYFXarlT7hcCqiDgSEbuAnvQ4RMSGiNhbJpa/AGZLUs1nZjbMgcMDPPjkDlY+1cvjr5yF75+ZVa/Vk9rEoQSTfl5QoM5kYHfme19aVqp9qTbFHG8TEceAV4G3VnwmZmVkJ4PMnXCIK8981UOOZlVq+kQRSeuACwvsuqvSQxQoi2a2kbQEWAIwYcIEuru7yxy6NR06dCi3sUO+4j84EGx9aYCF097EJbEHjdnL4OBgbuIvJE/XvxDHn09NT2oRMafYPkn7JE2KiL2SJgEvF6jWB2RvOEwB9qTbxdqXalPMUJs+SWOBtwAHipzTCmAFQEdHR3R2dpY5dGvq7u4mr7FDPuI//vyZBlmzYzvL5l/GB2ZN46E9L9Hf39/y8ZeSh+tfiuPPp1YffuwCFqfbi4E1BepsBKZLmippHMkEkK4y7buARemMxqnAdOCZKmL5EPA3EVGud2dWUPb+mVfXN6ufVk9q9wBzJW0H5qbfkXSRpLVw/P7W7cBjwAvA6ojYUqp9un81sBX4LnBbRAymx/6ipD7gDEl9ku5Oj/UnwFsl9QCfpsBMTLNKFHpVzOLrp/r+mVkdNH34sZSI2A/MLlC+B1iQ+b4WWFtp+3TfcmB5gfLPAp8tUP6vwE1VhG92Ar8qxqzxWjqpmbWD4W+lvmP2JceHGp3QzOrLSc2sgbKr6juZmTWek5pZA3io0aw5nNTM6shDjWbN5aRmVkdDq4I4mZk1h5Oa2QhlXw/z2sAx7pg9ncXXX+xkZtYETmpmNRo+1Lhh536e2PYKy+Zf5oRm1iROamY1KDSrcc6MiVz3jn1eFcSsiZzUzKpQblbjtFlnNTlCs9HNSc2sAp7VaJYPTmpmJTiZmeWLk5pZEV4NxCx/nNTMhvFqIGb55aRmRpLIVj61i6EXnHuo0SyfnNRsVDvxnlkPgJOZWY45qdmoU6xXdsfsSwB5NRCzHHNSs1HDvTKz9uekZm2v0LR898rM2pOTmrWlA4cHWLtrgLddfog/+OutnpZvNkqc1uwASpE0XtLjkrann+cVqTdP0jZJPZKWVtJe0rK0/jZJN2TKl0vaLenQsN/xaUlbJW2WtF7S2+/iHPAAAAvqSURBVBtxzlYfj2zazeptR48ntKFp+R+fNc0JzayNtXRSA5YC6yNiOrA+/X4CSWOA+4H5wAzgFkkzSrVP9y8CLgfmAQ+kxwH4X8DMArH8CLgmIq4A/gL4Yl3O0OrmwOEBvvL4Nr7y+E+YM2MiN3e8id96/wyWzb+ML918pZOZ2SjQ6sOPC4HOdHsl0A18blidmUBPROwEkLQqbbe1RPuFwKqIOALsktSTHufpiNiQHueEXxIRT2S+bgA+MsJzszopNAHkjHFjWDB1HNMmnOVFhs1GkVZPahMjYi9AROyVdEGBOpOB3ZnvfcC1ZdpPJklM2TaTq4jrVuDRYjslLQGWAEyYMIHu7u4qDt06Dh061LKxHxwI1r00wNC0/DU7jrJw2lgWThsLiIuO/JRDA4dbNv5y+vv7GRwczG380Np/P5Vw/PnU9KQmaR1wYYFdd1V6iAJl0YA2SUPpI8A1wKxidSJiBbACoKOjIzo7Oys5dMvp7u6mFWIf6okNvafskU27eU2DrNmxHUin5V869qQJIK0Sfy16e3vp7+/PbfyQ7+sPjj+vmp7UImJOsX2S9kmalPayJgEvF6jWB2TfyjgF2JNuF2tfqk1RkuaQJNtZ6dBlw2T/IR+t94IKvVn6iinnelq+mRXV6hNFuoDF6fZiYE2BOhuB6ZKmShpHMgGkq0z7LmCRpNMlTQWmA8+UCkTSVcCDwAcjolByLaj/SPCVx3/CgcMDx8sOHB7gwSd3HC/LTnDY8cohHnxyByuf6uXzj77IZ1Y/d7zswOGBk9q2gkpiytYptD10jjteOXT8WgxdAwje1zGBJ7a9AgTL5l/G4uuncufcDu6ce6kTmpkd1/SeWhn3AKsl3Qr8FLgJQNJFwDciYkFEHJN0O/AYMAb4ZkRsKdU+IrZIWk0ymeQYcFtEDKbH/iLwq8AZkvrS33M38N+As4BH0kkkP42ID5Y7gf4jwb3rtwPBGePGMmfGxOPTzF8bOMYZ48aeMMFhc1//8Weq3viH/I36m/tePaHtnBkT6XruZ2R7LNlloEr1Ysr1Bg8OBA8+uYM5Myaybuu+45/ZYcBC55ON6YNXXsS6rfsK9ray57Nh5/4TPuHE1T6Gft9o7rmaWXktndQiYj8wu0D5HmBB5vtaYG2l7dN9y4HlBco/C3y2QHnRYdJSzj1d3DF7OgCff/TF4/9ov69jAiA+/+iLJwylffDKi7juHScnjuvese+EV6EMtc0mgaHEmU2S2WRaLNG8NnAsrfvGvjkzJvL15/+Vza+8eFLCySamQueTjalQkr5iyltYNv+yE87nt94/g+vekfzeK6acmKSHfHzWtFr+JzCzUaSlk1o7OPd0cefcSzlweIAzxo05nqCGktYZ48ac1PvITkEf+od82qyzjh8j2zabBICTkuRQWbFEM5Rckt7kG/s27NzP5ldePynhDPUahxJTofPJxlQoSQ+db/Z8xp857vh53zm3o/7/Q5jZqOCkdoqMP3PcCQlqSDW9j+wxsm2HksDwJJEtK5ZohpJLMvnzjX1zZkxkAk+xNH1oeSjmL9185UnDgIXOJ5uYip3v8PMxMxspJ7U2UihJZMuKJZrxZ44ruG/B1HEn3b9yIjKzVtbqsx/NzMwq5qRmZmZtw0nNzMzahpOamZm1DSc1MzNrG05qZmbWNpzUzMysbSiiojeuWI0kHQS2NTuOGp0P/GOzgxgBx99cjr+58hx/R0ScXUtDP3zdeNsi4ppmB1ELSZvyGjs4/mZz/M2V5/glbaq1rYcfzcysbTipmZlZ23BSa7wVzQ5gBPIcOzj+ZnP8zZXn+GuO3RNFzMysbbinZmZmbcNJzczM2oaTWp1JuknSFkmvSyo6nVZSr6TnJT03kumr9VRF7PMkbZPUI2npqYyxFEnjJT0uaXv6eV6Rei117ctdTyXuS/dvlvSuZsRZTAXxd0p6Nb3ez0n67WbEWYikb0p6WdLfF9nf6te+XPytfO3fJukJSS+k/+7cUaBO9dc/IvxTxx/gF4AOoBu4pkS9XuD8ZsdbbezAGGAH8A5gHPBjYEazY09j+yKwNN1eCnyh1a99JdcTWAA8Cgi4DvhBs+OuMv5O4K+bHWuR+P8d8C7g74vsb9lrX2H8rXztJwHvSrfPBn5Sj79999TqLCJeiIhcriBSYewzgZ6I2BkRA8AqYGHjo6vIQmBlur0SuLGJsVSqkuu5EHg4EhuAcyVNOtWBFtHKfw9lRcT/AQ6UqNLK176S+FtWROyNiB+m2weBF4DJw6pVff2d1JongO9JelbSkmYHU4XJwO7M9z5O/kNslokRsReS/8MAFxSp10rXvpLr2crXvNLY3i3px5IelXT5qQmtLlr52leq5a+9pIuBq4AfDNtV9fX3Mlk1kLQOuLDArrsiYk2Fh3lPROyRdAHwuKQX0//qaqg6xK4CZafsuZBS8VdxmKZc+yIquZ5NveZlVBLbD4G3R8QhSQuA7wDTGx5ZfbTyta9Ey197SWcBfwl8KiL+efjuAk1KXn8ntRpExJw6HGNP+vmypG+TDOM0/B/WOsTeB7wt830KsGeEx6xYqfgl7ZM0KSL2pkMULxc5RlOufRGVXM+mXvMyysaW/YcqItZKekDS+RGRh8V2W/nal9Xq117Sm0gS2p9FxF8VqFL19ffwYxNIOlPS2UPbwP8DFJy91II2AtMlTZU0DlgEdDU5piFdwOJ0ezFwUs+zBa99JdezC/hoOhPsOuDVoWHWFlA2fkkXSlK6PZPk3539pzzS2rTytS+rla99GtefAC9ExJeLVKv++jd7Bky7/QC/TPJfF0eAfcBjaflFwNp0+x0ks8R+DGwhGfrLRezp9wUkM5V2tErsaVxvBdYD29PP8Xm49oWuJ/AJ4BPptoD70/3PU2JWbYvGf3t6rX8MbACub3bMmdi/BewFjqZ/+7fm7NqXi7+Vr/17SYYSNwPPpT8LRnr9vUyWmZm1DQ8/mplZ23BSMzOztuGkZmZmbcNJzczM2oaTmpmZtQ0nNbMGk3RXugr55nSl9GubHdNISLpYUp+k04aVP5c+C5Utu1vSzyT9Xrl2ku6U9FNJXz0V52HtySuKmDWQpHcD7ydZjfyIpPNJVrPPrYjolbQb+CXgSQBJlwFnR8QzBZp8JSL+MK1Xqt0zkv4JKPraI7Ny3FMza6xJwD9GxBGAiPjHSJfpUvJety9Ieib9uSQt/4CkH0j6kaR1kiam5XcreX9Wt6Sdkv5TWn6xkndSfT3tEX5P0pvTfd1K340n6XxJven2r0n6K0nfVfL+uS8OBSzpVkk/Sdt+vUjP6Vskq4cMWZSWlVNrO7OKOKmZNdb3gLelSeIBSbOG7f/niJgJfBX472nZ3wLXRcRVJK9y+Wym/mXADSTrVf5OunYeJIvU3h8RlwP9wK9UENuVwIeBXwQ+rOSljRcB/4Xk3VVz099XyGrgRklDoz0fTmMtp9Z2ZhXx8KNZA0WyOvrVJENu7wP+p6SlEfFQWuVbmc+vpNtT0nqTSIYqd2UO+b/TXt8RSS8DE9PyXRHxXLr9LHBxBeGtj4hXASRtBd4OnA88GREH0vJHgEsLnNc/SNoCzJa0DzgaEWXX0Ky1nVmlnNTMGiwiBkneJt4t6XmSxZYfGtqdrZp+/hHw5YjoktQJ3J2pcySzPcgb/x8eXv7mdPsYb4zI/Nyw0Aodq9CrPooZGkrcR3VDiLW2MyvLw49mDSSpQ1L2/VVXAi9lvn848/l0uv0W4Gfp9mJGphe4Ot3+UAX1nwFmSTovHSIsNYz5lyQL0FY7hFhrO7Oy3FMza6yzgD+SdC5Jr6kHyL5t+3RJPyD5D8xb0rK7gUck/YxkZfWpI/j9fwislvT/An9TrnJE/EzSfyV5A/EeYCvwapG6/ZI2kLxxfFehOvVsZ1YJr9Jv1iTpTMRrokVe2DhE0lnpvcCxwLeBb0bEt2s81t3AoaEp/RXU/zWSa3J7Lb/PzMOPZjbc3ZKeI3l56i7gOyM41iFgiaTfK1dR0p3AMuCfy9U1K8Y9NTMzaxvuqZmZWdtwUjMzs7bhpGZmZm3DSc3MzNqGk5qZmbWN/wukAtGXnqTAxwAAAABJRU5ErkJggg==\n" + ], + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": [ + "iVBORw0KGgoAAAANSUhEUgAAAbUAAAEGCAYAAADi9AsGAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3dfbRV9X3n8fdHCNbHKPGKiDYgkmsxzWjioDXJeDNqBVYa7LQanNWRZlyDSXXGmE4TXHYmNi0TY5uk2mgqSR2wD2Fw0kSmgzFKvY6pEsVosBAJV7kKQtFAr+Eh5XKv3/lj70sOh/N8z+Hsfe7ntdZZd5+9f799vnsv4je/h/3bigjMzMw6wVHtDsDMzKxZnNTMzKxjOKmZmVnHcFIzM7OO4aRmZmYdY3y7A+h0J510Upx99tntDqMhe/fu5bjjjmt3GA3Lc/w7d+5keHiYU089td2hNCzP9x8cfzs9++yzP4mIrkbqOqm12KRJk1i7dm27w2hIb28vPT097Q6jYXmOf+nSpQwMDPDJT36y3aE0LM/3Hxx/O0l6pdG67n40M7OO4aRmZmYdw0nNzMw6hpOamZl1DCc1MzPrGE5qZmbWMZzUzMysY+QiqUmaLWmjpD5Ji0ocl6S70uPrJL23Wl1JEyU9ImlT+vfkgmO3pOU3Sroi3XespP8r6UVJ6yXd3urrNjMba3btHWTc8RMnNVo/80lN0jjgbmAOMBO4RtLMomJzgBnpZyHw1RrqLgJWR8QMYHX6nfT4fOBcYDZwT3oegD+JiHOA84H3S5rT/Cs2Mxu7Hli7hXHHTzyj0fqZT2rALKAvIl6OiEFgOTCvqMw84P5IrAFOkjS5St15wLJ0exlwZcH+5RGxPyI2A33ArIjYFxGPAaTn+gHQ8I03M7ND7do7yL7BIYb3Dmxr9Bx5WCZrCrCl4PtW4MIaykypUndSRGwHiIjtkkYW2ZsCrClxroMknQT8GnBnvRdjZmaH2rV3kAfWbmHf4DB3ru6DeOutRs+Vh6SmEvuixjK11K3r9ySNB74B3BURL5c8gbSQpBuUrq4uent7q/xkNu3Zsye3sUO+4x8YGGB4eDi38UO+7z84/iNp1eZBVmw8wLzp47m6+2388b43dzZ6rjwkta3AmQXfzwCKm6blykyoUHeHpMlpK20y8HqNv7cE2BQRf1ou4IhYkpaju7s78rqoaJ4XRIV8x9/f38/AwEBu44d8339w/EfCSAvt+g9PYvpZO7jqgjOZeNwE/vg/Dg81es48jKk9A8yQNE3SBJJJHCuLyqwErk1nQV4EvJl2LVaquxJYkG4vAB4s2D9f0tGSppFMPnkaQNIfAW8H8rt0uplZBuzaO8jvrniezz/0Io9u2MH1l0xn4nETRn3ezLfUImJI0o3Aw8A44L6IWC/p4+nxPwdWAXNJJnXsAz5WqW566tuBFZKuA14FrkrrrJe0AtgADAE3RMSwpDOAW4EXgR9IAvhKRHy95TfBzKzDPLB2C49tfIMPdXdx1QVnVq9Qo8wnNYCIWEWSuAr3/XnBdgA31Fo33b8TuLRMncXA4qJ9Wyk93mZmZjUa6XK8bGbyKNpIl2Oz5CKpmZlZvh06w3ETANdfMr3pv5OHMTUzM8uxwvEzCG6Zc05TuxwLuaVmZmYtVTh+tuDiaU3tbizmpGZmZi3R6vGzUpzUzMysqY7U+FkpHlMzM7OmemDtliMyflaKW2pmZtY0I4sS33TpDBZcPLXl3Y3F3FIzM7NR27V3kHsff4llT/Zz5+o+jp0w7ognNHBSMzOzJmhnl2Mhdz+amVnD2jHDsRInNTMza8jIQ9WPbXwDOHIzHCtx96OZmTWkVYsSj4ZbamZmVpesdTkWclIzM7OatPOh6lq5+9HMzKo6kosSj4ZbamZmVtWRXJR4NJzUzMysrCyPn5XipGZmZofJw/hZKbkYU5M0W9JGSX2SFpU4Lkl3pcfXSXpvtbqSJkp6RNKm9O/JBcduSctvlHRFwf73SXohPXaXJLXyus3M2iUrK4TUK/NJTdI44G5gDjATuEbSzKJic4AZ6Wch8NUa6i4CVkfEDGB1+p30+HzgXGA2cE96HtLzLiz4rdnNvl4zs3Y7dFHiaVx/yfRMdzkWykP34yygLyJeBpC0HJgHbCgoMw+4PyICWCPpJEmTgakV6s4DetL6y4Be4DPp/uURsR/YLKkPmCWpHzgxIp5Kz3U/cCXwUKXg9+3bx9KlS0dx+e0zMDBAf39/u8NoWJ7j/6d/+ieGhoZy+28H8n3/YWzGv3dIPP/mLzD4lnh853Fc3rWHla892ZoAWyQPSW0KsKXg+1bgwhrKTKlSd1JEbAeIiO2STi0415oS5zqQbhfvP4ykhSQtOk477TQGBgYqXF52DQ8P5zZ2yHf8Q0NDRERu44d8338Ym/Gv3XsS39t9PBce9xM+cMI+ztJPGRh4q0URtkYeklqpcauosUwtdWv9vZrPFRFLgCUA3d3d8clPfrLKT2ZTb28vPT097Q6jYXmOf+nSpQwMDJDXfzuQ7/sPYyv+kUkhfzBzEo9u2NH2GY4333xzw3XzkNS2AoUjlGcA22osM6FC3R2SJqettMnA61XOtTXdrhSHmVmuZHFR4tHI/EQR4BlghqRpkiaQTOJYWVRmJXBtOgvyIuDNtGuxUt2VwIJ0ewHwYMH++ZKOljSNZELI0+n5dku6KJ31eG1BHTOzXMriosSjkfmWWkQMSboReBgYB9wXEeslfTw9/ufAKmAu0AfsAz5WqW566tuBFZKuA14FrkrrrJe0gmQyyRBwQ0QMp3U+ASwFjiGZIFJxkoiZWVbl7aHqWmU+qQFExCqSxFW4788LtgO4oda66f6dwKVl6iwGFpfYvxZ4dz2xm5llSV4fqq5VHrofzcysCfKyKPFo5KKlZmZmo5eXRYlHw0nNzKzDder4WSlOamZmHarTx89K8ZiamVmHyuuixKPhlpqZWQfaPRjs08iixFM7truxmFtqZmYdZNfeQe59/CUefeUAd67u49gJ48ZMQgMnNTOzjjIWuxwLufvRzKwDFM9wPH3/q/xah08KKcVJzcws50otStzbu6VKrc7k7kczs5zrtEWJR8MtNTOznBpLD1XXyknNzCxnxuJD1bVy96OZWY6MhUWJR8MtNTOzHBkLixKPhpOamVkOePysNk5qZmYZ5vGz+nhMzcwsw8b6CiH1ynRSkzRR0iOSNqV/Ty5TbrakjZL6JC2qpb6kW9LyGyVdUbD/fZJeSI/dJUnp/k9J2iBpnaTVkt7Zyms3M9u1d5B9gyOLEk/j+kumu8uxipqTWpogqn1OanJ8i4DVETEDWJ1+L45rHHA3MAeYCVwjaWal+unx+cC5wGzgnvQ8AF8FFgIz0s/sdP9zwAUR8R7gfwN3NPdSzcwSI4sSL3uyf0wuSjwa9bTUtgFrgWcrfNY1Ob55wLJ0exlwZYkys4C+iHg5IgaB5Wm9SvXnAcsjYn9EbAb6gFmSJgMnRsRTERHA/SN1IuKxiNiX1l8DnNGsizQzK+Qux8bVM1HkRxFxfqUCkp4bZTzFJkXEdoCI2C7p1BJlpgCFi5xtBS6sUn8KSWIqrDMFOJBuF+8vdh3wULmgJS0kae3R1dVFb29vuaKZtmfPntzGDvmOf2BggOHh4dzGD/m+/9Ce+HcPBk+8doDzu8ZzdffbODu2cUKIdc/Uv45j3u9/o+pJar9SvEPScESMq1SmGkmPAqeVOHRrracosS8arFP1XJJ+C7gAuKTcySNiCbAEoLu7O3p6eqqEk029vb3kNXbId/z9/f0MDAzkNn7I9/2HIx9/4aLE08+azh0fHt0Mx7zf/0bVnNQi4l9K7FYNZaqd97JyxyTtkDQ5bWVNBl4vUWwrUNg2P4OkqxSgXP1ydbZyaLdi4bmQdBlJsr0kIvbXdIFmZhUUTtn3osSjN+rZj5L+vaT/KulESbOr16jLSmBBur0AeLBEmWeAGZKmSZpAMgFkZZX6K4H5ko6WNI1kQsjTaVflbkkXpbMerx2pI+l84F7gIxFRKrmamdWtePzsi1ef50kho9CMh6+nA18Cfg84CfhOE8454nZghaTrgFeBqwAknQ58PSLmRsSQpBuBh4FxwH0Rsb5S/YhYL2kFsAEYAm6IiOG0zieApcAxJONmI2NnfwwcDzyQzvJ/NSI+0sRrNbMxxCuEtEYzktraiNgr6Q+ofRysJhGxE7i0xP5twNyC76uAVbXWT48tBhaX2L8WeHeJ/WW7Sc3MauUVQlprtN2PEREPjWwA35I0R5Knu5uZleDp+q1VV0tN0tHAeyLimTJFPkvyYPJCSe+MiAVlypmZjTmHrhAy1d2NLVA1qUm6GXgPyXjZTOCvSCZnlPJoRKwAVjQtQjOznDu0y7GPW+ac44TWIrV0P15Ikqx+Hfj7iPjDCmUvlvS3kr4m6VPNCdHMLN/c5XjkVG2pRcR8SR+R9JfAcVWK/2NE/Imk8STrKpqZjVme4Xjk1TSmFhErJT0M/J6kr0XEfypT9MOS9gMPR8QPmxalmVnOFK4QAp7heKTUs6LIfuCPJFVqN38UOB/4d5KmV0h+ZmYd7YG1W7xCSBvU/ZxaRFRaWfOqiPgK8J1y7z4zM+tk7nJsr2Y8fF2o8MWZi4DPNPn8ZmaZ5Ieqs6HZb74+StIHJR0FvKPJ5zYzy6SR8TPPcGy/0bbUil/V8mmStRN/G/j2KM9tZpYLheNnCy6e5u7GNhpVUouIo4q+DwNfGVVEZmY54fGz7Kk5qUn6QUS8d7RlzMzyzuNn2VVPS+2XJK2rcFzA20cZj5lZ5o2sEHLTpWd7/Cxj6klq59RQZrh6ETOz/PKixNlWz8PXr7QyEDOzLPOixPnQ7OfUzMw6SvH4mbscs81JzcysglLjZ26hZVezH75uKkkTJT0iaVP6t+TSW5JmS9ooqU/SolrqS7olLb9R0hUF+98n6YX02F2SVPRbvykpJF3Qims2s+w4dPxsGtdfMt0JLeNqTmqSvpf+3S3pp0WfNyVtlvQ7TY5vEbA6ImYAq9PvxXGNA+4G5pC8xPQaSTMr1U+Pzyd5Pc5s4J70PABfBRYCM9LP7ILfOgH4L8D3m3uZZpYlu/YOsmrzIMue7OfO1X0cO2Gck1lO1JzUIuID6d8TIuLEos/bgQuAm5oc3zxgWbq9DLiyRJlZQF9EvBwRg8DytF6l+vOA5RGxPyI2A33ALEmTgRMj4qmICOD+ot/8Q+AO4F+acnVmlkkPrN3Cio0H8JJX+dO0MbWI2Cmpp1nnS02KiO3p+bdLOrVEmSlA4ZsDtpK8rbtS/SnAmqI6U4AD6XbxfiSdD5wZEX8n6b9WClrSQpLWHl1dXfT29la7zkzas2dPbmOHfMc/MDDA8PBwbuOHfN7/3YPBE68d4Pyu8Vw5NTg7tnFCiHXPVHo5STbl8f43Q1MniowkkHpIehQ4rcShW2s9RalQGqxTcn+6QPOXSda0rCoilgBLALq7u6Onp6eWapnT29tLXmOHfMff39/PwMBAbuOH/N3/wpd6Tj9rOleesyVX8RfL2/1vlrbPfoyIy8odk7RD0uS0lTUZeL1Esa1AYd/AGcC2dLtc/XJ1tqbbxftPAN4N9KbzRk4DVkr6SESsrfFSzSzDil/qmcfWmTUw+1GJ35L039PvvyhpVvNDA2AlsCDdXgA8WKLMM8AMSdMkTSCZALKySv2VwHxJR0uaRjIh5Om0pblb0kXprMdrgQcj4s2IOCUipkbEVJKuSyc0sw6wa+8g9z7+EpfNnMQtc87hi1ef50khOdZIS+0e4C3g3wKfA3YD3wT+dRPjGnE7sELSdcCrwFUAkk4Hvh4RcyNiSNKNwMPAOOC+iFhfqX5ErJe0AtgADAE3pG8YgOTVOUuBY4CH0o+ZdRgvStyZGklqF0bEeyU9BxAR/5y2kJouInYCl5bYvw2YW/B9FbCq1vrpscXA4hL715J0NVaKq6dK6GaWYYXjZ14hpLM0ktQOpM90BYCkLpKWm5lZLvilnp2rkaR2F/At4FRJi4HfBP5bU6MyM2sBv9Sz89Wd1CLiryU9S9KtJ+DKiPhR0yMzM2sSj5+NHY3MfvxCRLwYEXdHxFci4keSvtCK4MzMRmtk/OzzD72IVwjpfI0saHx5iX1zRhuImVkrFI+feVHizlZz96OkTwC/A5wlaV3BoROAf2h2YGZmo+Hxs7GpnjG1vyF5ZuvzHLpa/u6I2NXUqMzMGuTxs7GtnlX634yI/oi4JiJeKfg4oZlZZoy81NPjZ2NT3bMfJR0N/AYwtbB+RHyueWGZmdXv0Jd6TnV34xjUyHNqDwJvAs8C+5sbjplZ/Q7tcuzjljnnOKGNUY0ktTMiYnb1YmZmrVU8fuYlr6yRKf1PSvrlpkdiZlan4vEzT9m3eqb0v0Cy3uN44GOSXibpfhQQEfGe1oRoZnY4j59ZKfV0P364ZVGYmdXI42dWST1T+l+JiFdI3qH2ZsH3nwKfbVWAZmaFPGXfKmlkosh7ImJg5Ev6PrXzmxiTmdlhvEKI1aKRpHaUpJMj4p8BJE1s8DxmZjUpfKkneIUQK6+R2Y9fJJkB+YeSPgc8CdzR3LASkiZKekTSpvTvyWXKzZa0UVKfpEW11Jd0S1p+o6QrCva/T9IL6bG7JKng2NWSNkhaL+lvWnHNZvZzu/YOcu/jL7Hsyf6DixK7u9EqqTupRcT9JC8G3QG8Afy7iPjLZgeWWgSsjogZwGoOXXMSgPQt3HeTvClgJnCNpJmV6qfH5wPnArOBe9LzAHwVWAjMSD+z0zozgFuA90fEucAnm361ZnaI4vGzL159nrscraKGug0jYj2wvsmxlDIP6Em3lwG9wGeKyswC+iLiZQBJy9N6GyrUnwcsj4j9wGZJfcAsSf3AiRHxVHqu+4ErSRZy/k/A3SPdrhHxelOv1MwO8viZNaqe59S+FxEfkLSb5Hm1g4dInlM7senRwaSI2E7yA9slnVqizBRgS8H3rcCFVepPAdYU1ZkCHEi3i/cDvAtA0j8A44DbIuI7jV6YmZXm8TMbjZqTWkR8IP17QjMDkPQocFqJQ7fWeooS+6LEvlrqVDrXeJLuyB7gDOAJSe8unAl68OTSQpIuTLq6uujt7a0STjbt2bMnt7FDvuMfGBhgeHg4t/FD/fd/92DwxGsH2D8Ej710gPd0HcXp+1+lt3dL9cotkOd/P5D/+BtVT0vtU5WOR8SXGgkgIi6r8Js7JE1OW1mTgVJdfluBwpHjM4Bt6Xa5+uXqbE23S51rK7AmIg6QdFluJElyz5S4piXAEoDu7u7o6ekpd4mZ1tvbS15jh3zH39/fz8DAQG7jh/rv/72Pv8SKjS8m6ze+a3zbuxzz/O8H8h9/o+qZKHJC+rkA+ARJt9wU4OMkEzRaYSWwIN1eQPKGgGLPADMkTZM0gWQCyMoq9VcC8yUdLWkaSXJ6Ou2q3C3ponTW47UFdb4NfAhA0ikk3ZEvN+cyzcaukRmOl82c5PUbbdTq6X78AwBJ3wXeGxG70++3AQ+0JDq4HVgh6TrgVeCq9DdPB74eEXMjYkjSjcDDJGNd96UTWcrWj4j1klaQTCYZAm6IiOG0zieApcAxJBNEHkr3Pwz8qqQNwDDwexGxs0XXbTYmePzMmq2R2Y+/CAwWfB8keWFo06VJ49IS+7cBcwu+rwJW1Vo/PbYYWFxi/1rg3SX2B/Cp9GNmo1C4fqOfP7NmaiSp/SXwtKRvkUyi+HWS6fJmZjUZef6s8P1n7m60Zqg7qUXEYknfAT6Q7vpYRDzX3LDMrBP5+TNrtUYfvn4WeLbJsZhZB/P4mR0JdSc1SReQPEP2zrS+XxJqZlU9sHaLx8+s5Rppqf018HvAC8BbzQ3HzDqNuxztSGokqb0RESurFzOzsWz3YHDv4y+lb6jeBLjL0VqvkaT2WUlfJ1n1fv/Izoj426ZFZWa5NdIy2/DKAR586dAZjmat1khS+xhwDvA2ft79GICTmpkdnK4/b/p4T9e3I66RpPavIuKXmx6JmeXerr2D7Bsc4qZLZ3B2vMavubvRjrBG3ny9puAlnGZmh7yh+s7VfRw7YRwnTCj10guz1mokqX0AeF7SRknrJL0gaV2zAzOz7CtMZoVvqPb4mbVLI92Ps5sehZnlkpe7sqxpZJmsVyT9K+CD6a4nIuKHzQ3LzLKucPxswcVTncwsE+rufpR0E8kD2Kemn7+S9J+bHZiZZVOp8TMnNMuKRrofrwMujIi9AJK+ADwF/FkzAzOzbCl8Xcydqzf5+TPLpEaSmkhekjliON1nZh3M42eWB40ktf8JfD99nxrAlcBfNC8kM8saj59ZXtSV1CQJeADoJZnaL/w+NbOOdWiXYx+3zDnHCc0yra6JIhERwLcj4gcRcVdE3NnKhCZpoqRHJG1K/55cptzs9Lm5PkmLaqkv6Za0/EZJVxTsf1/67F2fpLvSRI6kX5T0mKTn0ufz5rbqus3azc+fWV41uqLIv256JKUtAlZHxAySBZQXFReQNA64G5gDzASuKVjxpGT99Ph84FyS5+7uSc8D8FVgITAj/Yw8l/f7wIqIOD+te09zL9UsG0Ze5lmYzBZcPI3rL5nuVpplXiNJ7UPAU5JeOgIriswDlqXby0jG74rNAvoi4uWIGASWp/Uq1Z8HLI+I/RGxGegDZkmaDJwYEU+lrdL7C+oEcGK6/XZgWzMu0CxrCl/m6WRmedPIRJE5TY+ivEkRsR0gIrZLOrVEmSnAloLvW4ELq9SfAqwpqjMFOJBuF+8HuA34bvpM3nHAZeWClrSQpLVHV1cXvb29la8yo/bs2ZPb2CHf8Q8MDDA8PHxE4989GDzx2gHO7xrP1d1v44NT9rLumScbPl+e7z84/rxqJKn9TkR8pnBH+qzaZ8qUr0jSo8BpJQ7dWuspSuyLButUOtc1wNKI+KKkXwH+UtK7I+Kwt39HxBJgCUB3d3f09PRUCSebent7yWvskO/4+/v7GRgYOCLxH5wMomFWbNzE9LOmc8eHR7+6fp7vPzj+vGqk+/HyEvsabr1FxGUR8e4SnweBHWmXIOnf10ucYitQOHp9Bj/vGixXv1ydrel2qXNdB6xIY34K+AXglEau2SxLRp4/82QQ6wQ1JzVJn5D0AtCdjqWNjKdtBlo1prYSWJBuLwAeLFHmGWCGpGmSJpBM4lhZpf5KYL6koyVNI5kQ8nTaVblb0kXprMdrC+q8ClwKIOmXSJLaG825TLP2OPT5M4+fWf7V0/34N8BDwOc5dBbi7ojY1dSofu52YIWk60iSylUAkk4Hvh4RcyNiSNKNwMPAOOC+iFhfqX5ErJe0AtgADAE3RMTIKimfAJYCx6TX+1C6/3eBr0m6maRL8rfTySRmuePnz6xT1ZPU3gVsiYhrACRdC/wG8Iqk21qR2CJiJ2nrqGj/NmBuwfdVwKpa66fHFgOLS+xfC7y7xP4NwPvrCN8sc7x+o3W6esbU7gUGAST9G5JW0P3Am6STIswsu/z8mY0F9bTUxhW0xj4KLImIbwLflPR880Mzs2Yqfv7Micw6UV1JTdL4iBgi6dJb2OB5zOwIGulyvGzmJACvrm8drZ5k9A3gcUk/AX4GPAEg6WySLkgzy5Di8TOA6y8Z/fNnZllWc1KLiMWSVgOTge8WzPw7CvCbr80yZGT87LGNb3gyiI0pdXUbRsSaEvt+3LxwzKwZPH5mY5XHwsw6iMfPbKxzUjPrAB4/M0s0svajmWVIqefPPH5mY5VbamY5Vdg68/iZWcItNbOcKl5d/4tXn+eEZmOeW2pmOePJIGblOamZ5Ujh82fgySBmxZzUzHKg1PiZJ4OYHc5JzSzDKr0qxl2OZodzUjPLqJ+9dVTJpa6czMzKc1Izy6j1PzuR773uqfpm9XBSM8uYXXsH+Yedx3DW0W/wwQ980K0zszpk+jk1SRMlPSJpU/r35DLlZkvaKKlP0qJa6ku6JS2/UdIVBfsXS9oiaU/Rbxwt6X+ldb4vaWrzr9jGsl17B7n38ZdY9mQ/j7xxPC/vP95vpTarU6aTGrAIWB0RM4DV6fdDSBoH3A3MAWYC10iaWal+enw+cC4wG7gnPQ/A/wFmlYjlOuCfI+Js4MvAF5pyhWYcvtTV5V17OPeYn7Y7LLPcyXpSmwcsS7eXAVeWKDML6IuIlyNiEFie1qtUfx6wPCL2R8RmoC89DxGxJiK2V4nlfwOXSlLDV2bGoa2zwqWu3v+On3HMUW+1Ozyz3Mn6mNqkkQQTEdslnVqizBRgS8H3rcCFVepPAdYU1ZlSJZaDvxMRQ5LeBN4B/KS4oKSFwEKArq4uent7q5w6m/bs2ZPb2CHb8e8eDJ547QD7h+DBlw4wb/p4ru5+Gx+cspd1zzzJwMAAw8PDmY2/Flm+/7Vw/PnU9qQm6VHgtBKHbq31FCX2RYl9R6xORCwBlgB0d3dHT09PlVNnU29vL3mNHbIb/2FvpX7X+MMmg/T39zMwMJDJ+GuV1ftfK8efT21PahFxWbljknZImpy2siYDr5cothUoXFrhDGBbul2ufqU65YzU2SppPPB2YFeVOmYHeVV9s9bL+pjaSmBBur0AeLBEmWeAGZKmSZpAMgFkZZX6K4H56YzGacAM4Ok6YvlN4O8jolrrzuyQcTOvqm/WWllParcDl0vaBFyefkfS6ZJWQTK+BdwIPAz8CFgREesr1U+PrwA2AN8BboiI4fTcd0jaChwraauk29Jz/QXwDkl9wKcoMRPTrFipF3guuHiap+qbtUjbux8riYidwKUl9m8D5hZ8XwWsqrV+emwxsLjE/k8Dny6x/1+Aq+oI38YwdzWatUemk5pZ3ngBYrP2clIza6KRt1E7mZm1h5OaWZPs2jvIvsEhbrp0BgsunupkZtYGWZ8oYpZZI7MaX3pjz8HZjXeu7uPYCeOc0MzaxC01swYUPkC95uWdh73zzMzaw0nNrA6lZjX+/odnctFZOzx+ZpYBTmpmNag2q3H6Jce3O0Qzw0nNrCJP0TfLFyc1szIOW3jYycws85zUzIp4NRCz/HJSMyNJZMue3MzIG4bc1WiWT05qNqYdOmbWB+BkZpZjTmo2JpWaAHLTpWcD8mogZjnmpGZjjieAmHdkknMAAAv9SURBVHUuJzXreCOtsstmTuLRDTs8AcSsgzmpWUfatXeQVZsHOfPcPfzR320ou5yVE5pZZ3FSs45RPINxxcYDvMEGL2dlNoY4qVlulepWLJzBeHX327i+KJF5OSuzzpbpV89ImijpEUmb0r8nlyk3W9JGSX2SFtVSX9ItafmNkq4o2L9Y0hZJe4p+41OSNkhaJ2m1pHe24pqtssLXvfzuiuf5/EMv8kd/t4HPP/QiEOksxhksuHgac6dNYHrX8Vx/yXS3zMzGiKy31BYBqyPi9jRZLQI+U1hA0jjgbuByYCvwjKSVEbGhXH1JM4H5wLnA6cCjkt4VEcPA/wG+AmwqiuU54IKI2CfpE8AdwEdbc9kGh7bEVj7/GoUPRo+Mj7lb0cwKZT2pzQN60u1lQC9FSQ2YBfRFxMsAkpan9TZUqD8PWB4R+4HNkvrS8zwVEWvS8xzyIxHxWMHXNcBvjfLarIziZ8hGEhj8/MHoy2ZOcreimR0m60ltUkRsB4iI7ZJOLVFmCrCl4PtW4MIq9aeQJKbCOlPqiOs64KFyByUtBBYCdHV10dvbW8eps2PPnj0tj333YPDEawc4v2s8z70xxPld4/nGxv2se+Mt5k0fz9Xdb+P8rj2cODQeEGfHNk4IsWX9FrqBdc9sKXvuIxF/qwwMDDA8PJzb+CHf9x8cf161PalJehQ4rcShW2s9RYl90YI6SUXpt4ALgEvKlYmIJcASgO7u7ujp6anl1JnT29tLK2Iv7FYcmW7/Bicd/LvujZ/xoe4uPnv1eQe7E69p4HdaFf+R0N/fz8DAQG7jh3zff3D8edX2pBYRl5U7JmmHpMlpK2sy8HqJYluBMwu+nwFsS7fL1a9UpyxJl5Ek20vSrkurot5xseJuRTOzerQ9qVWxElgA3J7+fbBEmWeAGZKmAa+RTAD591XqrwT+RtKXSCaKzACerhSIpPOBe4HZEVEquY5ZxVPrKyUwqD4u5vExM2tU1pPa7cAKSdcBrwJXAUg6Hfh6RMyNiCFJNwIPA+OA+yJifaX6EbFe0gqSySRDwA3pzEck3UGSFI+VtDX9nduAPwaOBx5IJ5G8GhEfafkdyICRpHXVBUnjtjiBFa/YUS6BveeMJNEVLhjsBGZmzZTppBYRO4FLS+zfBswt+L4KWFVr/fTYYmBxif2fBj5dYn/ZbtJKBvYHX37kx3zkvNMPa8UU7nt0w+i73Coln2rnLtXa+tam/Tx34MdA0traNzjEuq1vlkxgxV2IpRLYzZd3N3xtZma1yHRS6wQD+4M7V29i3daBw1oxxfvWvLyT3//wzINJCDiYpCYeN+GQZaBKJUkon3z2DQ6lER2eTMu2tl4agpd+/rLMwoWAy42BjbS8nMDMrB2c1FrspKPFTZfO4CPnnX5YK6ZwH+kahSN/CxPTvsEhjp0w/pBloEolyUrJZ+SZr1J1y7W2Thz6B6ZOnXawtbVr7yDHThjnMTAzyywntRY76Whx8+XvAijZihnZ98WrzzvY/TeShEYSDYjPP/TiIS+yLJUkKyWfXXsHSZ5aOLRupdbWr884mp6edx2MdeJxE7j+kulH4K6ZmTXGSS0jChPGSBIaSUzAIUlqRLmuvlLJZ+JxE0omU7e2zKyTOKllVHFicgvJzKy6TK/Sb2ZmVg8nNTMz6xhOamZm1jGc1MzMrGM4qZmZWcdwUjMzs47hpGZmZh1DETW9G9MaJGk3sLHdcTToFOAn7Q5iFBx/ezn+9spz/N0RcUIjFf3wdettjIgL2h1EIyStzWvs4PjbzfG3V57jl7S20brufjQzs47hpGZmZh3DSa31lrQ7gFHIc+zg+NvN8bdXnuNvOHZPFDEzs47hlpqZmXUMJzUzM+sYTmpNJukqSeslvSWp7HRaSf2SXpD0/GimrzZTHbHPlrRRUp+kRUcyxkokTZT0iKRN6d+Ty5TL1L2vdj+VuCs9vk7Se9sRZzk1xN8j6c30fj8v6b+3I85SJN0n6XVJ/1jmeNbvfbX4s3zvz5T0mKQfpf/dualEmfrvf0T408QP8EtAN9ALXFChXD9wSrvjrTd2YBzwEnAWMAH4ITCz3bGnsd0BLEq3FwFfyPq9r+V+AnOBhwABFwHfb3fcdcbfA/xdu2MtE/+/Ad4L/GOZ45m99zXGn+V7Pxl4b7p9AvDjZvzbd0utySLiRxGRyxVEaox9FtAXES9HxCCwHJjX+uhqMg9Ylm4vA65sYyy1quV+zgPuj8Qa4CRJk490oGVk+d9DVRHx/4BdFYpk+d7XEn9mRcT2iPhBur0b+BEwpahY3fffSa19AviupGclLWx3MHWYAmwp+L6Vw/8htsukiNgOyf9ggFPLlMvSva/lfmb5ntca269I+qGkhySde2RCa4os3/taZf7eS5oKnA98v+hQ3fffy2Q1QNKjwGklDt0aEQ/WeJr3R8Q2SacCj0h6Mf1/XS3VhNhVYt8Rey6kUvx1nKYt976MWu5nW+95FbXE9gPgnRGxR9Jc4NvAjJZH1hxZvve1yPy9l3Q88E3gkxHx0+LDJapUvP9Oag2IiMuacI5t6d/XJX2LpBun5f9hbULsW4EzC76fAWwb5TlrVil+STskTY6I7WkXxetlztGWe19GLfezrfe8iqqxFf6HKiJWSbpH0ikRkYfFdrN876vK+r2X9DaShPbXEfG3JYrUff/d/dgGko6TdMLINvCrQMnZSxn0DDBD0jRJE4D5wMo2xzRiJbAg3V4AHNbyzOC9r+V+rgSuTWeCXQS8OdLNmgFV45d0miSl27NI/ruz84hH2pgs3/uqsnzv07j+AvhRRHypTLH673+7Z8B02gf4dZL/d7Ef2AE8nO4/HViVbp9FMkvsh8B6kq6/XMSefp9LMlPppazEnsb1DmA1sCn9OzEP977U/QQ+Dnw83RZwd3r8BSrMqs1o/Dem9/qHwBrg4nbHXBD7N4DtwIH03/51Obv31eLP8r3/AElX4jrg+fQzd7T338tkmZlZx3D3o5mZdQwnNTMz6xhOamZm1jGc1MzMrGM4qZmZWcdwUjNrMUm3pquQr0tXSr+w3TGNhqSpkrZKOqpo//Pps1CF+26T9Jqkz1WrJ+lmSa9K+sqRuA7rTF5RxKyFJP0K8GGS1cj3SzqFZDX73IqIfklbgA8CjwNIOgc4ISKeLlHlyxHxJ2m5SvWelvTPQNnXHplV45aaWWtNBn4SEfsBIuInkS7TpeS9bl+Q9HT6OTvd/2uSvi/pOUmPSpqU7r9NyfuzeiW9LOm/pPunKnkn1dfSFuF3JR2THutV+m48SadI6k+3f1vS30r6jpL3z90xErCk6yT9OK37tTItp2+QrB4yYn66r5pG65nVxEnNrLW+C5yZJol7JF1SdPynETEL+Arwp+m+7wEXRcT5JK9y+XRB+XOAK0jWq/xsunYeJIvU3h0R5wIDwG/UENt5wEeBXwY+quSljacD/43k3VWXp79XygrgSkkjvT0fTWOtptF6ZjVx96NZC0WyOvr7SLrcPgT8L0mLImJpWuQbBX+/nG6fkZabTNJVubnglP83bfXtl/Q6MCndvzkink+3nwWm1hDe6oh4E0DSBuCdwCnA4xGxK93/APCuEtf1T5LWA5dK2gEciIiqa2g2Ws+sVk5qZi0WEcMkbxPvlfQCyWLLS0cOFxZN//4Z8KWIWCmpB7itoMz+gu1hfv6/4eL9x6TbQ/y8R+YXikIrda5Sr/ooZ6QrcQf1dSE2Ws+sKnc/mrWQpG5Jhe+vOg94peD7Rwv+PpVuvx14Ld1ewOj0A+9Lt3+zhvJPA5dIOjntIqzUjflNkgVo6+1CbLSeWVVuqZm11vHAn0k6iaTV1AcUvm37aEnfJ/k/mNek+24DHpD0GsnK6tNG8ft/AqyQ9B+Av69WOCJek/Q/SN5AvA3YALxZpuyApDUkbxzfXKpMM+uZ1cKr9Ju1SToT8YLIyAsbR0g6Ph0LHA98C7gvIr7V4LluA/aMTOmvofxvk9yTGxv5PTN3P5pZsdskPU/y8tTNwLdHca49wEJJn6tWUNLNwC3AT6uVNSvHLTUzM+sYbqmZmVnHcFIzM7OO4aRmZmYdw0nNzMw6hpOamZl1jP8PZKkTvgndWu0AAAAASUVORK5CYII=\n" + ], + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": [ + "iVBORw0KGgoAAAANSUhEUgAAAaIAAAERCAYAAAA5VaO0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3df5RdZX3v8fcnP6uZXCEyJCGghECHYtXoUBCQZqYES7JqIyqgt4tGiw3Way9wtTVcVkuu1hJdgvdaURPUS2wt3uFKSq4mIFAnqIiQ4JAfhJgAQwmJCSQZkgnKkMn3/nH2wGFy5sw5Z87MPnvO57XWWWf/ePae7zxryJfne57zbEUEZmZmaRmTdgBmZlbfnIjMzCxVTkRmZpYqJyIzM0uVE5GZmaXKicjMzFLlRDQASd+WtEfSpircq1VSR97rt5LeV404zcyyTv4eUWGS/hDoBr4TEb9fxftOAbYDJ0bEi9W6r5lZVnlENICIuB/Yl39M0ixJd0laL+knkk6v4NYfBNY4CZmZ5TgRlWc58NcR0Qx8GvhaBff4EHBbVaMyM8uwcWkHkBWSGoBzgdsl9R2emJx7P/DZApc9GxF/nHeP6cBbgbuHN1ozs+xwIirdGKArImb3PxERdwB3lHCPS4GVEfFytYMzM8sql+ZKFBEHgKckXQKgnLeXeZsP47KcmdlrOBENQNJtwM+BJkk7JF0B/BlwhaRHgc3AgjLudzJwErC2+tGamWWXp2+bmVmqPCIyM7NUebJCAcccc0yceuqpaYdRkUOHDjFp0qS0w6hYluPfu3cvvb29HH/88WmHUrEs9z84/jStX7/++YhorORaJ6ICpk6dyrp169IOoyLt7e20tLSkHUbFshz/rbfeSldXF1dffXXaoVQsy/0Pjj9Nkp6u9FqX5szMLFVORGZmlionIjMzS5UTkZmZpSoTiUjSRZK2StouaXGB838maUPyeiB/xQNJnZI2Js8ByuYMBDOzUazmZ81JGgvcDFwI7AAelrQqIh7La/YUMCci9kuaR26V7LPzzrdGxPMjFrSZmZUsCyOis4DtEfFkRPQA36Pf0joR8UBE7E92HwROHOEYzcysQjU/IgJmAM/k7e/gtaOd/q4A1uTtB/AjSQEsi4jlhS6StAhYBNDY2Eh7e/tQYk5Nd3d3ZmOHbMff1dVFb29vZuOHbPc/OP60HOwJxjZMmVrp9VlIRCpwrOACeZJaySWid+cdPi8idko6HrhH0uPJ01dfe8NcgloO0NTUFFn9UlmWvxAH2Y6/s7OTrq6uzMYP2e5/cPxp2Heoh0+1dTC2YUrFlagsJKId5Fat7nMisLN/I0lvA74JzIuIvX3HI2Jn8r5H0kpypb6jEpGZmZVu36Eebl/3DC/29PLjrc9xpOc3L1R6ryx8RvQwcJqkmZImkHvU9qr8BpLeRO7BdJdHxK/yjk+SNLlvG3gPsGnEIjczG2X2Heph2donWPFAJzeseRwIrp13Ooe7ft1Z6T1rfkQUEYclfZLc47XHAt+OiM2SPp6c/wbw98Abga8lj/E+HBFnAlOBlcmxccC/RsRdKfwaZmaZ11eG+/HW57jqglO5dt7pXHLmSUyZNIGPH+k9XOl9az4RAUTEamB1v2PfyNv+GPCxAtc9CZT7FFUzM8vTvwzX2tTIwnNnMmXShKrcPxOJyMzMRl5+Avpf9207ahRULU5EZmZ2lGJluGpzIjIzs1cMdxmuECciMzMbsTJcIU5EZmZ1biTLcIU4EZmZ1ak0ynCFOBGZmdWZNMtwhTgRmZnVkbTLcIU4EZmZ1YFaKcMV4kRkZjaK1VoZrhAnIjOzUaoWy3CFOBGZmY0ytVyGK8SJyMxslMhCGa4QJyIzs1EgK2W4QpyIzMwyLGtluEKciMzMMiirZbhCnIjMzDImy2W4QpyIzMwyYjSU4QpxIjIzq3GjqQxXyJi0AyiFpIskbZW0XdLiAucl6SvJ+Q2S3lnqtWZmtWrfoR6WrX2CFQ90csOax4Hg2nmns/DcmVw5Z9aoSEKQgRGRpLHAzcCFwA7gYUmrIuKxvGbzgNOS19nA14GzS7zWzKzmjLbPgYqp+UQEnAVsj4gnASR9D1gA5CeTBcB3IiKAByUdI2k6cHIJ1x7lxRdf5NZbb6327zEiurq66OzsTDuMimU5/l//+tccPnw4s387kO3+h9ER/+btT9Pxwu/Qc0Ss3TuJ0ya9xISnH2TiuGDVU2lHODyykIhmAM/k7e8gN+oZrM2MEq8FQNIiYBHAtGnT6OrqGlrUKent7c1s7JDt+A8fPkxEZDZ+yHb/Q7bj/82RMWw69AYOHxS/ONTA2ZOe592TX+QtrzvAy91HyOZvVZosJCIVOBYltinl2tzBiOXAcoCmpqa4+uqry4mxZrS3t9PS0pJ2GBXLcvy33norXV1dZPVvB7Ld/5Dd+PvKcD/bkyvD/dGEcZkrw11zzTUVX5uFRLQDOClv/0RgZ4ltJpRwrZlZKvpPx35b45hRMR27XFmYNfcwcJqkmZImAB8CVvVrswr482T23LuAFyJiV4nXmpmNqIFmw/3lW3+n7pIQZGBEFBGHJX0SuBsYC3w7IjZL+nhy/hvAamA+sB14EfhosWtT+DXMzIDis+Ha258Z/AajUM0nIoCIWE0u2eQf+0bedgD/pdRrzcxG2mhdFaEaMpGIzMyyarSvilANTkRmZsOknr6UOhRORGZmVeYyXHmciMzMqsRluMo4EZmZVYHLcJVzIjIzGwKX4YbOicjMrAIuw1WPE5GZWZlchqsuJyIzsxK5DDc8nIjMzAbhMtzwciIyMyvCZbjh50RkZlaAy3Ajx4nIzCyPy3Ajz4nIzCzhMlw6nIjMrO65DJcuJyIzq1suw9UGJyIzq0suw9UOJyIzqysuw9UeJyIzqwsuw9WuMWkHUIykKZLukbQteT+2QJuTJP1Y0hZJmyVdlXduiaRnJXUkr/kj+xuYWS3oK8PdsOZxILh23uksPHcmV86Z5SRUA2p9RLQYuC8ilkpanOx/pl+bw8CnIuIRSZOB9ZLuiYjHkvNfjogvjWDMZlYjXIbLhpITkaQpJTQ7EhFdQ4invwVAS7K9AminXyKKiF3ArmT7oKQtwAzgMcysLrkMly2KiNIaSr8FdgIq0mxsRLypGoElP7MrIo7J298fEUeV5/LOnwzcD/x+RByQtAT4CHAAWEdu5LR/gGsXAYsAGhsbm9va2qr0W4ys7u5uGhoa0g6jYlmOv6Ojg97eXpqbm9MOpWJZ7n/IxR8TJnHLxt+y4bkjLJg1jonjxPkzxjN5QrF/umpDlvu/tbV1fUScWcm15ZTmtkTEO4o1kPTLcgOQdC8wrcCp68q8TwPwfeDqiDiQHP468Dkgkvcbgb8odH1ELAeWAzQ1NUVLS0s5P75mtLe3k9XYIdvxd3Z20tXVldn4Idv9v+9QD0vb2pl+4gw2PLeN1qZGrr90dqZGQFnu/6EoJxGd0/+ApN6IGFuszWAiYu5A5yTtljQ9InZJmg7sGaDdeHJJ6LsRcUfevXfntbkF+EG58ZlZbcsvw7VtfZmrTgyX4TKm5FlzEfHbAodVQpuhWAUsTLYXAnceFYAk4FvkRmw39Ts3PW/3YmBTleMzsxT1nw13adN4z4bLoCHPmpP0n4ETyJW1zo2Iu4Yc1auWAm2SrgD+A7gk+ZknAN+MiPnAecDlwEZJHcl1/z0iVgNflDSbXGmuE7iyirGZWUoGmg234eFdTkAZVI3p27OAm4C/AY4BqpaIImIvcEGB4zuB+cn2TxlgAkVEXF6tWMwsfZ4NNzpVIxGti4hDkv4HZU4wMDMrldeGG72GmogiItb0bUhaKWkesDEidgw9PDOrd/5S6uhX1hI/kiZK+oMiTa4HJgOLJK0YUmRmVtf2Heph2donWPFA52uW5rkxY1OybXCDjogkXQO8jdznP2cA/wI8PEDzeyOiDcjmt0HNrCa4DFdfSinNnQ38v4j4rqSvR8TnirQ9V9JFwF4KTKc2MyvGZbj6NGgiiogPSfpTSf8MTBqk+aaI+JKkccBbqhKhmY16ng1X30qarBARqyTdDfyNpFsi4i8HaPonkl4C7o6IR6sWpZmNWi7DWcmz5iLiJeAfJJ1UpNllwDuA90uaVSRhmVmdcxnO+pQ9fTsinily+pKI+CpwV6GH2JmZuQxn/VX7wXhvztsu9BA7M6tTTkA2kGonojGSzgd+Bryxyvc2s4zy50BWzFATUf813v4W+CtyD6P7tyHe28wyzp8DWSmGlIgiYky//V7gq0OKyMwyz2U4K0fJiUjSIxHxzqG2MbPRzWU4K1c5I6Lfk7ShyHkBbxhiPGaWMX2jn7lnTOXex3a7DGdlKycRnV5Cm95KAzGzbLp93TPcsOZxHnxyr0dBVpFyvtD69HAGYmbZkT8KerHnMFddcBp/OvsE3nXKbicgK1u1p2+b2SjWfxJC3yjo2nmnM6uxgVlzGtIO0TLIicjMSlJoEsLcM6a+Mgoyq5QTkZkVNdh3gTwKsqEq+Qmtkn6avB+UdKDf6wVJT0n6RDWDkzRF0j2StiXvBdevk9QpaaOkDknryr3ezI7mJ6TaSCk5EUXEu5P3yRHxn/q93gCcCVxV5fgWA/dFxGnAfcn+QFojYnZEnFnh9WaW6CvD5SeghefO5Mo5s5yErOqqVpqLiL2SWqp1v8QCoO+eK4B2yltIdajXm9WVgz3BsrVP+LtANqIUEWnHMCBJXRFxTN7+/og4qrwm6SlgPxDAsohYXs71yblFwCKAxsbG5ra2tur+MiOku7ubhobs1uyzHH9HRwe9vb00NzenHUrZDvYEP3n2ZQ6+2MOaZ8SCWeOYOE6cP2M8kyf0X1KydmX57weyHX9ra+v6fhWpkqU+WUHSvcC0AqeuK+M250XETknHA/dIejwi7i8njiR5LQdoamqKlpaWci6vGe3t7WQ1dsh2/J2dnXR1dWUu/vzZcAtmjefaeadm9rtAWf77gezHX6myE5EkAX8GnBIRn5X0JmBaRDxUSQARMbfIz9otaXpE7JI0HdgzwD12Ju97JK0EzgLuB0q63qweFZoNN3fGId47Z1baoVmdKXmyQp6vAecAH072DwI3Vy2i11oFLEy2FwJ39m8gaZKkyX3bwHuATaVeb1Zvis2Gy1IZzkaPSkpzZ0fEOyX9EiAi9ksarjH8UqBN0hXAfwCXAEg6AfhmRMwHpgIrcwM1xgH/GhF3FbverF55ZWyrRZUkopcljSU3MQBJjcCRqkaViIi9wAUFju8E5ifbTwJvL+d6s3rjB9RZLaskEX0FWAkcL+nzwAeBv6tqVGZWFX5AnWVB2YkoIr4raT25kYaA90XElqpHZmZD4jKcZUUls+a+EBGfAR4vcMzMUuYynGVNJbPmLixwbN5QAzGzofHacJZVJY+IJP0V8AnglH6PDJ8M/KzagZlZ6VyGsywrpzT3r8Aa4AZeu3jowYjYV9WozKwkLsPZaFDOo8JfAF7g1S+ymllKPBvORpNKJitMBD4AnJx/fUR8tnphmdlAXIaz0aaS7xHdSW5ktB54qbrhmNlAXIaz0aqSRHRiRFxU9UjMrCCX4Wy0qyQRPSDprRGxserRmNlruAxn9aCc6dsbya0vNw74qKQnyZXmBEREvG14QjSrPy7DWT0pZ0T0J8MWhZkBLsNZfSpn+vbTAJJWAFdFRFeyfyxwI/AXwxKhWZ1wGc7qVSWfEb2tLwnBK88jekcVYzKrKy7DWb2rJBGNkXRsROwHkDSlwvuY1TWX4cxyKkkgN5KbOfd/yU1euBT4fFWjMhvlXIYze1UlzyP6TvI8olZyM+beHxGPVT0ys1HIZTizo1VUUouIzcDmKsdiNmq5DGc2sJKfRyTpp8n7QUkH8l4HJR0YjuAkTZF0j6RtyfuxBdo0SerIex2QdHVybomkZ/POzR+OOM2K6SvD5T8jaOG5M7lyziwnITPKm7797uR98vCFc5TFwH0RsVTS4mT/NU+CjYitwGwASWOBZ4GVeU2+HBFfGqF4zV7hMpxZacpZWeG/FTsfETcNPZyjLABaku0VQDv9ElE/FwBP9H3nySwNLsOZlUcRUVpD6fpkswn4A2BVsv9e4P6I+FjVg5O6IuKYvP39EXFUeS7v/LeBRyLiq8n+EuAjwAFgHfCpvmnnBa5dBCwCaGxsbG5ra6vWrzGiuru7aWhoSDuMimU5/p8/soFNhyZz3LQZ3PnEyyyYNY6J48T5M8YzeYLSDq8kWe5/cPxpam1tXR8RZ1ZybcmJ6JULpB8BH4iIg8n+ZOD2SlfklnQvMK3AqeuAFaUmIkkTgJ3AWyJid3JsKvA8uWnmnwOmR8SgK0A0NTXF1q1by/5dakF7ezstLS1ph1GxrMa/71APl930A7YdmshVF5zK6yeMy+QIKKv938fxp0dSxYmokllzbwJ68vZ7yD0kryIRMXegc5J2S5oeEbskTQf2FLnVPHKjod15935lW9ItwA8qjdOskPwy3LZDEzl5Yrc/BzIrUyWJ6J+BhyStJDfSuJjc5zfDYRWwEFiavN9ZpO2HgdvyD/QlsWT3YmDTcARp9afQ50AXNnZzinY7CZmVqeTp230i4vPkFjjdD3QBH42IG6odWGIpcKGkbcCFyT6STpC0uq+RpNcn5+/od/0XJW2UtIHcF3CvGaY4rY4MNB37vDf+hteNOZJ2eGaZU+kXWteTe1T4sIqIveRmwvU/vhOYn7f/IvDGAu0uH9YAra54OrbZ8Cg7EUk6k9xEgjcn1/vBeDaqeTq22fCqZET0XeBvgI2A6xA2qnlxUrPhV0kiei4iVg3ezCy7XIYzGzmVJKLrJX0TuA94qe9gRPSfKGCWOS7DmY28ShLRR4HTgfG8WpoLjp6xZpYpLsOZpaOSRPT2iHhr1SMxS4nLcGbpqiQRPSjpDD8Mz7LOZTiz2lBJIno3sFDSU+Q+I/L0bcscl+HMakcliaiixU3NaoHLcGa1p+xEFBFPS3o7cH5y6CcR8Wh1wzKrLpfhzGpX2WvNSbqK3Jdaj09e/yLpr6sdmFm1+FHdZrWtktLcFcDZEXEIQNIXgJ8D/1TNwMyGymU4s2yoJBEJ6M3b702OmdUEl+HMsqWSRPS/gV8kzyMCeB/wreqFZFY5z4Yzy56yEpEkAbcD7eSmcYvc84h+Wf3QzErnMpxZdpWViCIiJP1bRDQDjwxTTGYlcxnOLPsqXVnhDyLi4apHY1YGl+HMRodKElErcKWkp4FDeGUFG2Euw5mNLpUkonlVj8KsBC7DmY1OZX+hFfhERDyd/wI+Ue3AACRdImmzpCPJI8oHaneRpK2StktanHd8iqR7JG1L3o8djjht+PlLqWajVyWJ6MICx4ZrlLQJeD9w/0ANJI0Fbk5iOAP4sKQzktOLgfsi4jRyD/JbXPguVqv2Heph2donWPFA52vKcE5AZqNHyaU5SX9FbuRziqQNfYeBBuBnwxAbEbEl+dnFmp0FbI+IJ5O23wMWAI8l7y1JuxXkpp1/ZjhitepyGc6sfigiSmsovQE4FriB144sDkbEvmGILf9ntwOfjoh1Bc59ELgoIj6W7F9ObgmiT0rqiohj8truj4iC5TlJi4BFAI2Njc1tbW3D8JsMv+7ubhoaGtIOo2Ld3d3EhEncsvG3bHjuCAtmjWPiOHH+jPFMnlDbC3h0dHTQ29tLc3Nz2qFUbDT8/Tj+dLS2tq6PiAE/QimmnMkKvws8ExEfBpD058AHgKclLak0GUm6F5hW4NR1EXFnKbcocKy07Jp/QcRyYDlAU1NTtLS0lHuLmtDe3k5WY993qIelbe1MP3EGG57bRmtTI9dfOjszI6DOzk66uroy2/+Q7b8fcPxZVU4iWgbMBZD0h8BS4K+B2eT+Af9gJQFExNxKrsuzAzgpb/9EYGeyvVvS9IjYJWk6sGeIP8uGQX4Zrm3ry1x1YrgMZ1ZHypmsMDZv1HMZsDwivh8RfwecWv3QSvYwcJqkmZImAB8CViXnVgELk+2FQCkjLBtB/WfDXdo03pMRzOpMWYlIUt8I6gLg3/POVfJ9pEFJuljSDuAc4IeS7k6OnyBpNUBEHAY+CdwNbAHaImJzcoulwIWStpGb7bd0OOK08g00G27+zAlOQGZ1ppwEchuwVtLzwG+AnwBIOhV4YRhiIyJWAisLHN8JzM/bXw2sLtBuL7mkaTXCs+HMrL+SE1FEfF7SfcB04Efx6nS7MeQ+KzIrymvDmVkh5a6+/WCBY7+qXjg2GnltODMrZlg+2zEDl+HMrDRORFZVfcln7hlT+YcfPOYynJkNyonIqur2dc9ww5rHefDJvS7DmVlJnIhsyPYd6mHFA08B4k9nnwDA3DOm8q5TdnsUZGaDciKyir32M6DtALx+wliunDMLgFlzsrlmlpmNLCciK1uhSQhXXXAqIC4586RBrzczy+dEZGXxd4HMrNqciKwk/i6QmQ0XJyIryt8FMrPh5kRkBTkBmdlIcSKyo/hzIDMbSU5E9gp/DmRmaXAiMpfhzCxVTkR1zmU4M0ubE1GdchnOzGqFE1GdcRnOzGqNE1EdcRnOzGqRE1EdcBnOzGrZmLQDKEbSJZI2Szoi6cwB2pwk6ceStiRtr8o7t0TSs5I6ktf8kYs+ffsO9bBs7ROseKCTG9Y8DgTXzjudGy+d7SRkZjWj1kdEm4D3A8uKtDkMfCoiHpE0GVgv6Z6IeCw5/+WI+NJwB1prXIYzs6yo6UQUEVsAJBVrswvYlWwflLQFmAE8NuBFo9jBnmDZ2idchjOzzFBEpB3DoCS1A5+OiHWDtDsZuB/4/Yg4IGkJ8BHgALCO3Mhp/wDXLgIWATQ2Nja3tbVVKfqRcbAn+MmzL3PwxR7WPCMWzBrHxHHi/BnjmTxh4ERea7q7u2loyOYD9To6Oujt7aW5uTntUCqW5f4Hx5+m1tbW9RFR8COUwaQ+IpJ0LzCtwKnrIuLOMu7TAHwfuDoiDiSHvw58Dojk/UbgLwpdHxHLgeUATU1N0dLSUuqPTl1+GW7BrPFcO+/UzJbh2tvbyVLf5+vs7KSrqyuz8UO2+x8cf1alnogiYu5Q7yFpPLkk9N2IuCPv3rvz2twC/GCoP6uWFJoNN3fGId6bPKrbzCwLanrWXCmU+wDpW8CWiLip37npebsXk5v8kHnFZsNlqQxnZgY1nogkXSxpB3AO8ENJdyfHT5C0Oml2HnA58EcFpml/UdJGSRuAVuCakf4dqq2vDJefgBaeO5Mr58zKZCnOzCz10lwxEbESWFng+E5gfrL9U6DgMCAiLh/WAEeQv5RqZqNVTSci89pwZjb6ORHVMH8p1czqgRNRDXIZzszqiRNRDXEZzszqkRNRjXAZzszqlRNRylyGM7N650SUEpfhzMxynIhS4DKcmdmrnIhGkMtwZmZHcyIaAS7DmZkNzIlomLkMZ2ZWnBPRMHEZzsysNE5EVeYynJlZeZyIqshlODOz8jkRVYHLcGZmlXMiGgKX4czMhs6JqEIuw5mZVYcTUZlchjMzqy4nohK5DGdmNjzGpB1AMZIukbRZ0hFJZxZp1ylpo6QOSevyjk+RdI+kbcn7sZXE0VeGu2HN40Bw7bzTWXjuTK6cM8tJyMxsiGp9RLQJeD+wrIS2rRHxfL9ji4H7ImKppMXJ/mdK/eEuw5mZDb+aTkQRsQVAUqW3WAC0JNsrgHZKSERHApatfcJlODOzEaCISDuGQUlqBz4dEesGOP8UsB8IYFlELE+Od0XEMXnt9kdEwfKcpEXAIoDXT31zc+NHbmbBrHFMHCfOnzGeyRMqToYjqru7m4aGhrTDqFiW4+/o6KC3t5fm5ua0Q6lYlvsfHH+aWltb10fEgB+hFJP6iEjSvcC0Aqeui4g7S7zNeRGxU9LxwD2SHo+I+8uJI0leywEmTj8tWpsauf7S2ZkbAbW3t9PS0pJ2GBXLcvydnZ10dXVlNn7Idv+D48+q1BNRRMytwj12Ju97JK0EzgLuB3ZLmh4RuyRNB/aUcr9jJ4obM5iEzMyyqKZnzZVC0iRJk/u2gfeQm+QAsApYmGwvBEoaYb1hopyEzMxGSE0nIkkXS9oBnAP8UNLdyfETJK1Omk0FfirpUeAh4IcRcVdybilwoaRtwIXJvpmZ1ZDUS3PFRMRKYGWB4zuB+cn2k8DbB7h+L3DBcMZoZmZDU9MjIjMzG/2ciMzMLFVORGZmlionIjMzS5UTkZmZpSoTS/yMNEkHga1px1Gh44D+i79mieNPl+NPV5bjb4qIyZVcWNPTt1O0tdI1k9ImaV1WYwfHnzbHn64sx5//CJ5yuTRnZmapciIyM7NUOREVtjztAIYgy7GD40+b409XluOvOHZPVjAzs1R5RGRmZqlyIjIzs1TVfSKSdImkzZKOSBpw2qSkTkkbJXUMZZpitZUR/0WStkraLmnxSMZYjKQpku6RtC15H+hR7jXV/4P1p3K+kpzfIOmdacRZSAmxt0h6IenrDkl/n0acA5H0bUl7JG0a4HzN9j2UFH/N9r+kkyT9WNKW5N+dqwq0Kb//I6KuX8DvAU1AO3BmkXadwHFpx1tJ/MBY4AngFGAC8ChwRtqxJ7F9EVicbC8GvlDr/V9Kf5J7TMkaQMC7gF+kHXcZsbcAP0g71iK/wx8C7wQ2DXC+Jvu+jPhrtv+B6cA7k+3JwK+q8bdf9yOiiNgSEVldRaHU+M8CtkfEkxHRA3wPWDD80ZVkAbAi2V4BvC/FWEpVSn8uAL4TOQ8CxySPq09bLf8tlCQi7gf2FWlSq30PlBR/zYqIXRHxSLJ9ENgCzOjXrOz+r/tEVIYAfiRpvaRFaQdTphnAM3n7Ozj6jyctUyNiF+T+yIHjB2hXS/1fSn/Wap+XGtc5kh6VtEbSW0YmtKqp1b4vR833v6STgXcAv+h3quz+r4slfiTdC0wrcOq6iLizxNucFxE7JR0P3CPp8eT/bIZdFeJXgWMjNm+/WPxl3Ca1/i+glP5Mtc+LKCWuR4A3R0S3pPnAvwGnDXtk1VOrfV+qmu9/SQ3A94GrI+JA/9MFLina/3WRiCJibhXusTN53yNpJbkSx4j8Q1iF+HcAJ+XtnwjsHOI9S1Ysfkm7JU2PiF3J8H3PAPdIrV4dhNIAAARWSURBVP8LKKU/U+3zIgaNK/8flohYLelrko6LiKwsxlmrfV+SWu9/SePJJaHvRsQdBZqU3f8uzZVA0iRJk/u2gfcABWe81KiHgdMkzZQ0AfgQsCrlmPqsAhYm2wuBo0Z4Ndj/pfTnKuDPkxlE7wJe6CtBpmzQ2CVNk6Rk+yxy/07sHfFIK1erfV+SWu7/JK5vAVsi4qYBmpXf/2nPwkj7BVxMLoO/BOwG7k6OnwCsTrZPITe76FFgM7mSWOqxlxp/vDqT5VfkZkzVUvxvBO4DtiXvU7LQ/4X6E/g48PFkW8DNyfmNFJmRWYOxfzLp50eBB4Fz0465X/y3AbuAl5O//Suy0vclxl+z/Q+8m1yZbQPQkbzmD7X/vcSPmZmlyqU5MzNLlRORmZmlyonIzMxS5URkZmapciIyM7NUORGZFSDpumR14Q3JCshnpx3TUEg6WdIOSWP6He9IvquSf2yJpGclfXaw6yRdI+k/JH11JH4PG53qYmUFs3JIOgf4E3KrDL8k6ThyK1VnVkR0SnoGOB9YCyDpdGByRDxU4JIvR8SXknbFrntI0n5gwEeQmA3GIyKzo00Hno+IlwAi4vlIlhhS7rlIX5D0UPI6NTn+Xkm/kPRLSfdKmpocX6Lc82faJT0p6b8mx09W7pkutyQjrx9Jel1yrl3Js6UkHSepM9n+iKQ7JN2l3PObvtgXsKQrJP0qufaWAUYot5FbSaHPh5Jjg6n0OrOSOBGZHe1HwEnJP+xfkzSn3/kDEXEW8FXgfybHfgq8KyLeQe7RCn+b1/504I/JrY93fbJWF+QWsrw5It4CdAEfKCG22cBlwFuBy5R7UNkJwN+Re/bLhcnPK6QNeJ+kvkrIZUmsg6n0OrOSuDRn1k/kVj1uJleOagX+j6TFEXFr0uS2vPcvJ9snJu2mkyvjPZV3yx8mo6uXJO0BpibHn4qIjmR7PXByCeHdFxEvAEh6DHgzcBywNiL2JcdvB363wO/1a0mbgQsk7QZejohB1+yr9DqzUjkRmRUQEb3knnrbLmkjuQVZb+07nd80ef8n4KaIWCWpBViS1+alvO1eXv3vrv/x1yXbh3m1WvE7/UIrdK9Cy+4PpK/MtpvyymuVXmc2KJfmzPqR1CQp//kvs4Gn8/Yvy3v/ebL9BuDZZHshQ9MJNCfbHyyh/UPAHEnHJuWzYiW+75NbpLLc8lql15kNyiMis6M1AP8k6Rhyo5PtQP5TYSdK+gW5/5H7cHJsCXC7pGfJrZg8cwg//0tAm6TLgX8frHFEPCvpH8k9KXMn8BjwwgBtuyQ9SO7JuE8ValPN68xK4dW3zcqQzGA7M2rkIWV9JDUkn22NA1YC346IlRXeawnQ3Td9u4T2HyHXJ5+s5OeZuTRnNjoskdRB7oGBT5F7vHSluoFFkj47WENJ1wDXAv0fF21WMo+IzMwsVR4RmZlZqpyIzMwsVU5EZmaWKiciMzNLlRORmZml6v8Dj5j4CjvON/AAAAAASUVORK5CYII=\n" + ], + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": [ + "iVBORw0KGgoAAAANSUhEUgAAAbUAAAEGCAYAAADi9AsGAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3de5xV5X3v8c8XDB4VjBIREWxEJGMxtV6IGmsLVmyQlw22Dcb0nCPJ8RRza9Xegi/bE5vGatJqjiYm1aQ5YJvEA00TaQpJhOPYJgZlTAwUwkQuYwYhSCBjYDAOM/zOH2ttshn2zL7M2rMv832/XvOaNWutZ81vr0z4+Tzrt55HEYGZmVkzGFXrAMzMzLLipGZmZk3DSc3MzJqGk5qZmTUNJzUzM2sax9U6gGZ3yimnxLnnnlvrMCrS3d3NSSedVOswKtbI8e/du5e+vj5OP/30WodSsUa+/+D4a+m55577SURMqKStk1qVTZw4kba2tlqHUZHW1lZmz55d6zAq1sjxL1myhK6uLm677bZah1KxRr7/4PhrSdKLlbb18KOZmTUNJzUzM2saTmpmZtY0nNTMzKxpOKmZmVnTcFIzM7Om4aRmZmZNw0nNzMzqxr7uHkaPHT+x0vZOamZmVhf2dffwJ8ueZ/TY8VMqvYaTmpmZ1YXlbZ082b6Hwz2vvlLpNTxNlpmZDZt93T0sb+tkzoyJrN60mwUzzwI4sg/gvX/7445Kr++kZmZmw2Z5Wyf3rNrM2m17ebJ9D2u37eWCKafwwJoXALhl1jTee7ivt9LrO6mZmdmwyfXMkl7ZJp5s38MFU17PHdeed+TYUDipmZlZ1eWGHRfMPItbZk0D4L4bLjyyb/xJYzL5PS4UMTOzqssNOy5v6zyyb/xJY7hl1rTMEho4qZmZWZXt6+7hYE8vt149PZMhxsE4qZmZWVUtb+vkgTVbOHHM6Ex7ZYX4mZqZmVVFfvk+UPVeGjipmZlZxnLJ7GBP31Gl+sPBw49mZpaZ3FRX96zaDERmpfqlck/NzMyGLL939mT7Hq5qmcDCK6ZW/Rlaf05qZmZWsf5Djbdefe6R3tlwJzRwUjMzswrlhhqfbN9T82SW46RmZmYVyc2qX6uhxkKc1MzMrCyFSvXrIaGBk5qZmZWolqX6pXJJv5mZFVXrUv1SuadmZmYDqpdS/VI5qZmZ2THqrVS/VE5qZmZ2lHos1S+Vk5qZmQGNN9RYiAtFzMwM+MVCnrlCkPtuuLChEhq4p2ZmNuLV83tn5XJSMzMbwfKfn0H9vXdWLic1M7MRqNDzs3p876xcTmpmZiNIo5bql8pJzcxshGjkUv1SOamZmTW5ZijVL5VL+s3MmlwzlOqXyj01M7Mm1Uyl+qVyUjMza0L7e6KpSvVL1RDDj5LmSmqXtEXS4gLHJenB9Ph6SRcXaytpvKQnJL2Qfj8179gd6fntkt6Wt/8SSRvSYw9KUjU/t5lZufZ19/DwU1tZ/eKhpirVL1XdJzVJo4GHgGuBGcC7JM3od9q1wPT0axHwmRLaLgbWRMR0YE36M+nxG4HzgbnAp9PrkF53Ud7vmpv15zUzq0QumS19umPEPD8rpBGGHy8FtkTENgBJjwHzgU1558wHHo2IANZKOkXSJODsQdrOB2an7ZcCrcCH0v2PRcRrwHZJW4BLJXUAJ0fEd9JrPQpcD6waLPiDBw+yZMmSIXz82unq6qKjo6PWYVSskeP/8Y9/TG9vb8P+7UBj339orPi7e8VXd43jhe7jmfWGA1wzAc7Yv5vjt+9ixfZaRze8GiGpTQY6837eAVxWwjmTi7SdGBG7ACJil6TT8661tsC1DqXb/fcfQ9Iikh4dZ5xxBl1dXYN8vPrV19fXsLFDY8ff29tLRDRs/NDY9x8aI/5XD49i46snc+iweKH7eM4+/gDnjd7NCaMON0T81dAISa3Qc6so8ZxS2pb6+0q+VkQ8AjwC0NLSErfddluRX1mfWltbmT17dq3DqFgjx79kyRK6urpo1L8daOz7D/Udf66qMXr6+FY6K8hvjjnuqOrGeo6/mNtvv73ito2Q1HYA+U85pwA7SzxnzCBtd0ualPbSJgEvF7nWjnR7sDjMzKou995Zs84KMhR1XygCrAOmS5oqaQxJEceKfuesAG5KqyAvB15JhxYHa7sCWJhuLwQez9t/o6TjJU0lKQh5Nr3efkmXp1WPN+W1MTMbFvu6ezjY08utV09n4RVTuWXWNCe0PHXfU4uIXkkfBL4BjAY+HxEbJb03Pf73wEpgHrAFOAi8Z7C26aXvBZZJuhn4EbAgbbNR0jKSYpJe4AMR0Ze2eR+wBDiBpEBk0CIRM7OsHD0R8RbuuPY8J7MC6j6pAUTESpLElb/v7/O2A/hAqW3T/XuBqwdoczdwd4H9bcCby4ndzGwoBptV347VEEnNzGwkGgmz6mfNSc3MrM6MpFn1s+akZmZWJ5p9Ac/h4KRmZlYHPNSYDSc1M7Ma8lBjthrhPTUzs6Y1khbwHA7uqZmZ1cBIXMBzODipmZkNo/7FIDByFvAcDh5+NDMbJrlikPzhRr9EnS331MzMqszFIMPHSc3MrEr83tnwc1IzM6sCv3dWGyUnNUnjSzjtcESMvKVWzcxSHmqsrXJ6ajvTr0IrQOeMBn5pSBGZmTUwL+BZW+UktR9ExEWDnSDpe0OMx8ysIfm9s/pQTlJ7a/8dkvoiYvRg55iZNbv852fg985qqeSkFhE/L7BbJZxjZtaUCj0/83tntTXk6kdJvw+cCTwCXBERXx9yVGZmdcyl+vUri5L+acD9wJ8BpwBOambWtFyqX9+ySGptEdEt6a+AOzO4nplZ3XGpfmMYalKLiFiV25D0FUnXAhsiYsfQwzMzqy0PNTaWsiY0lnS8pLcMcsqHgXHAIklLhxSZmVmNFZqAeOEVU7ll1jQntDpVtKcm6XbgApLnZTOAfwLWDXD66ohYBizLLEIzsxpZ3tbpocYGU8rw42XAv0bEFyR9JiL+epBzr5A0F9hL8rL2/ZlEaWY2jPZ197Byew+3XOcXqRtN0aQWETdKerukfwROKnL6f0bE30k6Djg/kwjNzIZJ/vOzZe2HmHbObr9I3WBKeqYWESuA/wl8V9JnBzn1Okl/CJwTEd/PIkAzs+HQ//nZDS2v84vUDaicGUVeAz4qabD/ld8JXAT8rqRpEfEHQw3QzKyaBirVX79ul4ccG1DZJf0R0TnI4QUR8Sng65JOrTwsM7Pqcql+cyqrpL8Eb8zbXpzxtc3MMuFS/eaV9crXoyT9OvBt4A0ZX9vMbEg8K0jzG2pS679g6J8D7wPeDXx1iNc2M8uEhxpHjiEltYgY1e/nPuBTQ4rIzCxjXo165Cg5qUn6bkRcPNRzzMyGQ/5K1Ad7ern16uksvOJsJ7MmV05P7ZclrR/kuIDXDzEeM7NM5Hpna7ft5cn2Pdxx7XlOaCNAOUntvBLO6as0EDOzLOT30ADmzJjI5efs9ovUI0Q5L1+/WM1AzMyGKn8BT+DIFFfTZo2tZVg2jLIu6TczG3aFSvXdMxuZnNTMrGG5VN/6y3pGkUxJGi/pCUkvpN8LTr0laa6kdklbJC0upb2kO9Lz2yW9LW//JZI2pMcelKR0/x9L2iRpvaQ1kt6ImdWMZwWxQkpOapK+lX7fL+ln/b5ekbRd0vszjm8xsCYipgNrKDD1lqTRwEPAtSSLmL5L0ozB2qfHbyRZHmcu8On0OgCfARYB09Ovuen+7wEzI+IC4J+Bj2f7Uc2sFPu6e3j4qa0sfbrjqFlBnMwMykhqEXFl+n1cRJzc7+v1wEzg1ozjmw8sTbeXAtcXOOdSYEtEbIuIHuCxtN1g7ecDj0XEaxGxHdgCXCppEnByRHwnIgJ4NNcmIp6MiINp+7XAlKw+pJkVl5/M8ntn991woZOZHZHZM7WI2CtpdlbXS02MiF3p9XdJOr3AOZOB/JUDdpCs1j1Y+8kkiSm/zWTgULrdf39/NwOrBgpa0iKS3h4TJkygtbV1oFPr2oEDBxo2dmjs+Lu6uujr62vY+CHb+7+/J/jshp+zfs9h5k87jhtaXse5sZNxIdavG2zhkMo18t8PNH78lcq0UCSXQMohaTVwRoFDd5Z6iUKhVNim6LUk/TeSXumsgS4eEY8AjwC0tLTE7Nmzi4RTn1pbW2nU2KGx4+/o6KCrq6th44ds7v+RQhD1sX7PC1zVMoEPD1PPrJH/fqDx469UzasfI2LOQMck7ZY0Ke1lTQJeLnDaDiC/dncKsDPdHqj9QG12cPSwYv61kDSHJNnOShdNNbMq8pyNVq6yk1paDfhfgXMi4iOSfgk4IyKezTw6WAEsBO5Nvz9e4Jx1wHRJU4GXSApAfr9I+xXAFyXdD5xJUhDybET0pYUwlwPPADcBnwSQdBHwMDA3IgolVzPLSP9ZQZzMrFSV9NQ+DRwGfhP4CLAf+DLwlgzjyrkXWCbpZuBHwAIASWcCn4uIeRHRK+mDwDeA0cDnI2LjYO0jYqOkZcAmoBf4QLrCACRL5ywBTiB5bpZ7dva3wFhgeVrl/6OIeHsVPrPZiJSfyD76tU3HzApiVopKktplEXGxpO8BRMRPJVXlP6EiYi9wdYH9O4F5eT+vBFaW2j49djdwd4H9bcCbC+wfcJjUzIau/wTEnhXEKlFJUjuUvtMVAJImkPTczMzKNtgExB5ytHJVktQeBL4CnC7pbuAdwF9mGpWZjQiegNiyVnZSi4gvSHqOZFhPwPUR8YPMIzOzpuUJiK1aKql+/FhEfAjYXGCfmdmAPAGxVVslExpfU2DftUMNxMyamycgtuFQck9N0vuA9wPnSFqfd2gc8O2sAzOz5lBoqHHhFVOdyKwqyhl+/CLJO1v3cPRs+fsjYl+mUZlZw9vfEzz81FYPNdqwKjmpRcQrwCvAu6oXjpk1ulzPbNOLh3h8q6e4suFVSaHI8cDvAWfnt4+Ij2QXlpk1ovwS/fnTjnMys2FXyXtqj5P02J4DPKmvmRV8bjZncje/7SmubJhVktSmRMTc4qeZWbMbrER//bqnax2ejUCVJLWnJf1KRGzIPBozaxj5Q41+bmb1opyS/g0k8z0eB7xH0jaS4UcBEREXVCdEM6snLtG3elZOT+26qkVhZnXPs4FYIyinpP9FAElLgVsjoiv9+VTgPuB/VCVCM6s5DzVao6jkmdoFuYQGR9ZTuyjDmMysTnio0RpNJUltlKRTI+KnAJLGV3gdM6tTHmq0RlVJMrqPpALyn0kKR26gwArSZtaYPNRojayS9dQeTddTu4qk8vF3I2JT5pGZ2bDyUKM1g4qGDSNiI7Ax41jMrAY81GjNpJz31L4VEVdK2k8y7HjkEMl7aidnHp2ZVZWHGq3ZlFPSf2X6fVz1wjGz4bS8rdNDjdZUyump/fFgxyPi/qGHY2bDITfkOGfGRAD3zqxplPNMLddDawHeAqxIf/5t4N+zDMrMsrevu4elT28neWIAD6x5AYBbPJO+NZFyhh//CkDSN4GLI2J/+vNdwPKqRGdmmVne1skDa7YAHPX8zKyZVFL9+EtAT97PPSQLhppZHcofajzY0wuIhVec7eFGa0qVJLV/BJ6V9BWSKsjfAZZmGpWZDVn/Un2A269pqXFUZtU1qtwGEXE3yeTFPwW6gPdExD1ZB2ZmlcuV6t+zajMQHmq0EaPSl6+fA57LOBYzGyLPCmIjXdlJTdJM4E7gjWl7LxJqVmOeFcQsUUlP7QvAnwEbgMPZhmNm5fKsIGa/UElS2xMRK4qfZmbV5KFGs2NVktQ+LOlzwBrgtdzOiPiXzKIyswF5qNFsYJUktfcA5wGv4xfDjwE4qZlVmYcazQZXSVL71Yj4lcwjMbMBeajRrDSVJLW1kmZ4YVCz6nr18Cg+8UQ7+XM1undmNrhKktqVwEJJ20meqbmk36wKNr56Mt8qMFejk5nZwCpJanMzj8LMjtjX3cO3957AOcfv4ZJL34rnajQrXdlJLSJelPSrwK+nu/4jIr6fbVhmI9fytk6e2DOWK8e9yj95rkazspQ996OkW0lewD49/fonSX+YdWDp7xov6QlJL6TfTx3gvLmS2iVtkbS4lPaS7kjPb5f0trz9l0jakB57UJL6/a53SIp0ZhWzIdnX3cPDT21l654DfOKJdj7xxA+ZM2Mi10w4wPkn/KzW4Zk1nEqGH28GLouIbgBJHwO+A3wyy8BSi4E1EXFvmqwWAx/KP0HSaOAh4BpgB7BO0oq0kKVge0kzgBuB84EzgdWS3hQRfcBngEXAWmAlyXDrqvR3jQP+CHimCp/VRqDlbZ3cs2oza7ft5cn2PQCcOGY0v/aGV+nq8oQ9ZuWqJKkJ6Mv7uY9ceVb25gOz0+2lQCv9khpwKbAlIrYBSHosbbdpkPbzgcci4jVgu6QtwKWSOoCTI+I76bUeBa4nTWrAXwMfB/40u49oI1H+GmcAc2ZM5IIpLwFiwcyzWLG9tvGZNapKktr/AZ5J11OD5B/9f8gupKNMjIhdABGxS9LpBc6ZDHTm/bwDuKxI+8kkPbH8NpOBQ+l2//1Iugg4KyK+JmnQpCZpEUlvjwkTJtDa2lrsc9alAwcONGzsUL/x7+8JPrvh56zfc5it27Yyb+oYOjd2ctHrkuPr1+2kq6uLvr6+uoy/VPV6/0vl+BtTWUktfb60nKTHcyVJD+09EfG9SgOQtBo4o8ChO0u9RIF9UWGbgvsljQI+Aby7lIAi4hHgEYCWlpaYPXt2Kc3qTmtrK40aO9Rv/A8/tZX1ezZzVcsEFt9wYcGqxo6ODrq6uuoy/lLV6/0vleNvTGUltYgISV+NiEuA72YRQETMGeiYpN2SJqW9rEnAywVO2wHkr344BdiZbg/UfqA2O9Lt/vvHAW8GWtO6kTOAFZLeHhFtJX5UG6HyhxpXb9p9ZMjR75yZZa/SGUXeEhHrMo/mWCuAhcC96ffHC5yzDpguaSrwEkkByO8Xab8C+KKk+0kKRaYDz0ZEn6T9ki4nKQa5CfhkRLwCnJb7hZJagT91QrNi8udqzC8GuWXWtBpHZtacKklqVwG3SHoR6Ka6M4rcCyyTdDPwI2ABgKQzgc9FxLyI6JX0QeAbwGjg8xGxcbD2EbFR0jKSYpJe4ANp5SPA+4AlwAkkBSK5IhGzkhWaq/EvrpvB5efsZsHMs4pfwMwqUklSuzbzKAYQEXuBqwvs3wnMy/t5JUn5fUnt02N3A3cX2N9GMtQ4WFyzi4RuI1SxZWGmzRpb6xDNmlrZL18D74+IF/O/gPdnHZhZo8kNNd6zajMQ3HHteSy8Yiq3zJrmZ2dmw6SSnto1HPuu2LUF9pmNCF4Wxqx+lJzUJL2PpEd2jqT1ud3AWODbVYjNrK55BWqz+lNOT+2LJEUT95BMN5WzPyL2ZRqVWZ3zCtRm9amcpPYmoDMi3gUg6Sbg94AXJd3lxGYjyfK2Tg81mtWhcpLaw8AcAEm/QVIu/4fAhSSzZ7wj8+jM6kz/ORvdOzOrL+UktdF5vbF3Ao9ExJeBL0t6PvvQzOpH/+dn4BeozepRWUlN0nER0Uvy7teiCq9j1hD2dfew9Ont5KYE7V8MYmb1p5xk9CXgKUk/AV4F/gNA0rnAK1WIzawmju6VbQFwMYhZgyg5qUXE3ZLWAJOAb0ZEbib8USTP1swaWqES/VuvPhcQC68428nMrAGUO0v/2gL7fphdOGa14RJ9s+bgZ2E2onk2ELPm4qRmI5JnAzFrTk5qNuJ4qNGseTmp2YjhoUaz5uekZk3PQ41mI4eTmjU1DzWajSxOataU9nX3sHJ7D9871OGhRrMRxEnNmkb/aa2WtR/i1inh3pnZCOKkZg1voGmtbmh5nXtnZiOMk5o1rGLTWq1ft8sJzWyEcVKzhuQCEDMrxEnNGorfNTOzwTipWd0rtq6ZE5qZ5TipWd3yumZmVi4nNasrA/XKvK6ZmZXCSc3qgntlZpYFJzWrKa82bWZZclKzmlre1sk9qza7V2ZmmXBSs5rZ193DwZ5ebr16untlZpaJUbUOwEau5W2dPLBmCyeOGe2EZmaZcE/Nhl3uOdqcGRMBWDDzrBpHZGbNwknNhkWhUn2AW2ZNq2FUZtZsnNRsWOSGGuHoUn0zsyw5qVlV5Q81HuzpxaX6ZlZNTmpWFf3fPwO4/ZqWGkdlZs3O1Y+WmX3dPTz81Fa27jnAnyx7nntWbQbCQ41mNmzcU7MhKVQAsnbbXi8LY2Y1Udc9NUnjJT0h6YX0+6kDnDdXUrukLZIWl9Je0h3p+e2S3pa3/xJJG9JjD0pS3rEbJG2StFHSF6v1uRtBrle29OkOHlizJR1iTHplf3HdDO649jzuu+FCJzQzG1b13lNbDKyJiHvTZLUY+FD+CZJGAw8B1wA7gHWSVkTEpoHaS5oB3AicD5wJrJb0pojoAz4DLALWAiuBucAqSdOBO4Bfi4ifSjq96p++DpU6V+O0WWNrG6iZjUj1ntTmA7PT7aVAK/2SGnApsCUitgFIeixtt2mQ9vOBxyLiNWC7pC3ApZI6gJMj4jvptR4FrgdWAX8APBQRPwWIiJcz/aR1LL+C8aNf28ST7Xs8V6OZ1aV6T2oTI2IXQETsGqB3NBnozPt5B3BZkfaTSXpi+W0mA4fS7f77Ad4EIOnbwGjgroj4eqGgJS0i6e0xYcIEWltbi3/SOnTgwAFaW1tZub2HZe2H+Le2H7J+z2EumDCKc2Mn40KsX9dZ/EI1kou/EXV1ddHX19ew8UNj339w/I2q5klN0mrgjAKH7iz1EgX2RYVtBrvWccB0kp7fFOA/JL05IrqOaRDxCPAIQEtLS8yePbtIOPXpX7/5JO06i1uum8i0c3YzZ8ZEVm/a3TC9s9bWVhr13nd0dNDV1dWw8UNj339w/I2q5kktIuYMdEzSbkmT0l7WJKDQkN8OIL9efAqwM90eqP1AbXak24WutQNYGxGHSIYs20mS3LpSPmejyB9q/OyGn7N+z2bgF9NZ+VmZmdWzuq5+BFYAC9PthcDjBc5ZB0yXNFXSGJICkBVF2q8AbpR0vKSpJMnp2XSocr+ky9Oqx5vy2nwVuApA0mkkw5HbsvmYtZdfzXjPqs189GubWL/nMFe1TPA7ZmbWMGreUyviXmCZpJuBHwELACSdCXwuIuZFRK+kDwLfIHnW9fmI2DhY+4jYKGkZSTFJL/CBtPIR4H3AEuAEkgKRVen+bwC/JWkT0Af8WUTsrd5HHz77unv4k2XPH1UAMmfGRCbwNItdlm9mDaSuk1qaNK4usH8nMC/v55Uk5fcltU+P3Q3cXWB/G/DmAvsD+OP0qynkl+cXell63tQxTmhm1lDqOqlZdRR618zl+WbWDJzURhAnMzNrdk5qTc4vTpvZSOKk1uSWt3Vyz6rNnmTYzEYEJ7UmkN8bW70peUl6xfMvAeLtF54JwJwZE7n8nMZ5cdrMrBJOak2gf28s9x3gxDGj/eK0mY0YTmpNIPdydK43NmfGRC6YkvTU/OK0mY0kTmoNqv+QY25YMdcbu/2alhpHaGY2/JzU6kD+6tH5a5LlElf+c7D+Zfn5Q425YUYzs5HKSa0OLG/r5IE1W9KfghPHHHdUCf7Bnt5j9uVPZ5UrADEzG+mc1KrscMDDT20ddNmWBTPP4mBPL7mVb/qX4IMGLct3AYiZWcJJrcr298RRCQmOHSYcf9KYI8/A9nX3cOKY0cf0wPrvc1m+mdmxnNSqLIBbr57O2y8880hl4sNPbT2SrPo/Mxt/0piCJfguyzczK85Jrcq6XgtOHDOaaRPGMm3WWB5+auuRntsFU07hgTUvAC7yMDPLQr0vEtrwTj3+6HfFFsw8i6taJqRDkXFkDkYzMxs699Sq7PXH66jnX+NPGsN9N1x4zLCjmZkNnZNaDeQ/NzMzs+x4+NHMzJqGk5qZmTUNJzUzM2saTmpmZtY0nNTMzKxpOKmZmVnTcFIzM7OmoYiodQxNTdJ+oL3WcVToNOAntQ5iCBx/bTn+2mrk+FsiYlwlDf3ydfW1R8TMWgdRCUltjRo7OP5ac/y11cjxS2qrtK2HH83MrGk4qZmZWdNwUqu+R2odwBA0cuzg+GvN8ddWI8dfcewuFDEzs6bhnpqZmTUNJzUzM2saTmoZk7RA0kZJhyUNWE4rqUPSBknPD6V8NUtlxD5XUrukLZIWD2eMg5E0XtITkl5Iv586wHl1de+L3U8lHkyPr5d0cS3iHEgJ8c+W9Ep6v5+X9L9qEWchkj4v6WVJ/znA8Xq/98Xir+d7f5akJyX9IP1359YC55R//yPCXxl+Ab8MtACtwMxBzusATqt1vOXGDowGtgLnAGOA7wMzah17GtvHgcXp9mLgY/V+70u5n8A8YBUg4HLgmVrHXWb8s4Gv1TrWAeL/DeBi4D8HOF63977E+Ov53k8CLk63xwE/zOJv3z21jEXEDyKiIWcQKTH2S4EtEbEtInqAx4D51Y+uJPOBpen2UuD6GsZSqlLu53zg0UisBU6RNGm4Ax1APf89FBUR/w7sG+SUer73pcRftyJiV0R8N93eD/wAmNzvtLLvv5Na7QTwTUnPSVpU62DKMBnozPt5B8f+IdbKxIjYBcn/YYDTBzivnu59Kfeznu95qbG9VdL3Ja2SdP7whJaJer73par7ey/pbOAi4Jl+h8q+/54mqwKSVgNnFDh0Z0Q8XuJlfi0idko6HXhC0ub0v7qqKoPYVWDfsL0XMlj8ZVymJvd+AKXcz5re8yJKie27wBsj4oCkecBXgelVjywb9XzvS1H3917SWODLwG0R8bP+hws0GfT+O6lVICLmZHCNnen3lyV9hWQYp+r/sGYQ+w7grLyfpwA7h3jNkg0Wv6TdkiZFxK50iOLlAa5Rk3s/gFLuZ03veRFFY8v/hyoiVkr6tKTTIqIRJtut53tfVL3fe0mvI0loX4iIfylwStn338OPNSDpJEnjctvAbwEFq5fq0DpguqSpksYANwIrahxTzgpgYbq9EDim51mH976U+7kCuCmtBLsceCU3zFoHisYv6QxJSrcvJfl3Z++wR1qZer73RdXzvU/j+gfgBxFx/wCnlX//a10B02xfwO+Q/NfFa8Bu4Bvp/jOBlen2OSRVYpZx6p0AAAOnSURBVN8HNpIM/TVE7OnP80gqlbbWS+xpXG8A1gAvpN/HN8K9L3Q/gfcC7023BTyUHt/AIFW1dRr/B9N7/X1gLXBFrWPOi/1LwC7gUPq3f3OD3fti8dfzvb+SZChxPfB8+jVvqPff02SZmVnT8PCjmZk1DSc1MzNrGk5qZmbWNJzUzMysaTipmZlZ03BSM6sySXems5CvT2dKv6zWMQ2FpLMl7ZA0qt/+59N3ofL33SXpJUkfKdZO0u2SfiTpU8PxOaw5eUYRsyqS9FbgOpLZyF+TdBrJbPYNKyI6JHUCvw48BSDpPGBcRDxboMknIuLv0vMGa/espJ8CAy57ZFaMe2pm1TUJ+ElEvAYQET+JdJouJeu6fUzSs+nXuen+35b0jKTvSVotaWK6/y4l62e1Stom6Y/S/WcrWZPqs2mP8JuSTkiPtSpdG0/SaZI60u13S/oXSV9Xsv7cx3MBS7pZ0g/Ttp8doOf0JZLZQ3JuTPcVU2k7s5I4qZlV1zeBs9Ik8WlJs/od/1lEXAp8Cvjf6b5vAZdHxEUkS7n8ed755wFvI5mv8sPp3HmQTFL7UEScD3QBv1dCbBcC7wR+BXinkkUbzwT+kmTtqmvS31fIMuB6SbnRnnemsRZTaTuzknj40ayKIpkd/RKSIbergP8raXFELElP+VLe90+k21PS8yaRDFVuz7vkv6W9vtckvQxMTPdvj4jn0+3ngLNLCG9NRLwCIGkT8EbgNOCpiNiX7l8OvKnA5/qxpI3A1ZJ2A4ciougcmpW2MyuVk5pZlUVEH8lq4q2SNpBMtrwkdzj/1PT7J4H7I2KFpNnAXXnnvJa33ccv/j/cf/8J6XYvvxiR+S/9Qit0rUJLfQwkN5S4m/KGECttZ1aUhx/NqkhSi6T89asuBF7M+/mded+/k26/Hngp3V7I0HQAl6Tb7yjh/GeBWZJOTYcIBxvG/DLJBLTlDiFW2s6sKPfUzKprLPBJSaeQ9Jq2APmrbR8v6RmS/8B8V7rvLmC5pJdIZlafOoTf/3fAMkn/Hfh/xU6OiJck/Q3JCsQ7gU3AKwOc2yVpLcmK49sLnZNlO7NSeJZ+sxpJKxFnRp0s2JgjaWz6LPA44CvA5yPiKxVe6y7gQK6kv4Tz301yTz5Yye8z8/CjmfV3l6TnSRZP3Q58dQjXOgAskvSRYidKuh24A/hZsXPNBuKempmZNQ331MzMrGk4qZmZWdNwUjMzs6bhpGZmZk3DSc3MzJrG/we5qpShQg+fiQAAAABJRU5ErkJggg==\n" + ], + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": [ + "iVBORw0KGgoAAAANSUhEUgAAAa0AAAEHCAYAAAAd0Rm/AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3df7RcVX338feH4LU2gCGSxJigAYmXBmsVEfAR9XbxqAmrrlDb1OB6JFLaiEKfgsunhLKstEqNXWo18iNGy0OwahpqKbePQaSRSws1QkAbCBK5wIUEYpDECdwACbl8nz/OvjgMc2fOnZl7557J57XWrDmzz97nfHdOwpezZ88+igjMzMyK4KB2B2BmZpaXk5aZmRWGk5aZmRWGk5aZmRWGk5aZmRWGk5aZmRXGwe0OQNJ84CvAJOAbEbG8Yr/S/tOAp4GPRMRdtdpKmgr8EzAHGAD+KCJ+JelVwD8DbwOujojzys7TBVwG9ADPAxdHxHdrxT5lypQ45phjmun+hLZnzx4mT57c7jDGxM6dOxkaGmL69OntDmXMdPL16+S+Qef3784773wiIqY10ratSUvSJOBy4D3ANuAOSb0RcW9ZtQXA3PQ6CbgSOKlO22XA+ohYLmlZ+nwh8CzwKeCN6VXuYuDxiHiDpIOAqfXinzFjBhs3bmyw9xNfX18fPT097Q5jTFx99dWUSiXOP//8docyZjr5+nVy36Dz+yfp4Ubbtnt48ESgPyIejIh9wBpgYUWdhcA1kdkATJE0s07bhcDqtL0aOB0gIvZExK1kyavSHwOfS/Wej4gnWtZLMzNriXYnrVnA1rLP21JZnjq12s6IiO0A6b3mGJCkKWnzM5LuknStpBmj6YiZmY29dn+npSplletKjVQnT9u8DgZmA7dFxCckfQL4AvDhyoqSlgJLAaZNm0ZfX1+Dp5z4BgcHO7Z/pVKJoaGhju0fdPb16+S+Qef3rxntTlrbgCPLPs8GHstZp6tG2x2SZkbE9jSU+HidOHaSTfK4Ln2+Fji7WsWIWAWsAuju7o5OHnfu5HH1gYEBSqVSx/YPOvv6dXLfoPP714x2Dw/eAcyVdFSavbcY6K2o0wucqczJwO405FerbS+wJG0vAa6vFURkqwb/G9nMQYBTgXtHbGBmZm3R1jutiNgv6TzgRrJp61dFxGZJ56T9K4F1ZNPd+8nuhs6q1TYdejmwVtLZwCPAouFzShoADgO6JJ0OvDfNOLwQ+KakLwO/HD6PmZlNHO0eHiQi1pElpvKylWXbAZybt20q30l2t1StzZwRyh8G3pU3bjMzG3/tHh40M7MDyK49+5h0yNSGZ2c7aZmZ2bi5duNWJh0ydXaj7Z20zMxs3Cw64UiGBndta7S9k5aZmY2bqZO7GBrctaPR9k5aZmZWGE5aZmZWGE5aZmZWGE5aZmZWGE5aZmZWGE5aZmZWGE5aZmZWGE5aZmZWGE5aZmZWGE5aZmZWGE5aZmZWGE5aZmZWGG1PWpLmS9oiqV/Ssir7JWlF2r9J0vH12kqaKukmSfen98NT+ask3SxpUNJlI8TTK+meseirmdmBaNeefXztlgfYtWdf08dqa9KSNAm4HFgAzAPOkDSvotoCYG56LQWuzNF2GbA+IuYC69NngGeBTwGfHCGeDwCDLemcmZkB2TO0PnfDfVy7cWvTxzq4BfE040SgPyIeBJC0BlgI3FtWZyFwTUQEsEHSFEkzgTk12i4EelL71UAfcGFE7AFulXRMZSCSDgE+QZYY17a2m2ZmB65FJxz5ovdmtHt4cBZQnnq3pbI8dWq1nRER2wHS+/QcsXwG+CLwdN7gzcysvqmTu/jou1/P1MldTR+r3XdaqlIWOevkaZsvCOnNwDERcYGkOXXqLiW7G2PatGn09fU1cspCGBwc7Nj+lUolhoaGOrZ/0NnXr5P7Bp3fv2a0O2ltA8rvF2cDj+Ws01Wj7Q5JMyNiexpKfLxOHG8H3ippgOzPZLqkvojoqawYEauAVQDd3d3R0/OSKh2jr6+PTu3fwMAApVKpY/sHnX39Orlv0Pn9a0a7hwfvAOZKOkpSF7AY6K2o0wucmWYRngzsTkN+tdr2AkvS9hLg+lpBRMSVEfGaiJgDnAL8vFrCMjOz9mrrnVZE7Jd0HnAjMAm4KiI2Szon7V8JrANOA/rJvm86q1bbdOjlwFpJZwOPAIuGz5nupg4DuiSdDrw3IsonfpiZ2QTV7uFBImIdWWIqL1tZth3AuXnbpvKdwKkjtJlTJ54B4I11wjYzszZo9/CgmZlZbk5aZmZWGE5aZmZWGE5aZmZWGE5aZmZWGE5aZmZWGE5aZmZWGE5aZmbWUq18flYlJy0zM2upVj4/q1LbV8QwM7PO0srnZ1Vy0jIzs5Yafn7WWPDwoJmZFYaTlpmZFYaTlpmZFYaTlpmZFYaTlpmZFYaTlpmZFUbbk5ak+ZK2SOqXtKzKfklakfZvknR8vbaSpkq6SdL96f3wVP4qSTdLGpR0WVn935T0PUn3SdosaflY99vMzEavrUlL0iTgcmABMA84Q9K8imoLgLnptRS4MkfbZcD6iJgLrE+fAZ4FPgV8sko4X4iIY4G3AO+QtKAlnTQzs5Zp953WiUB/RDwYEfuANcDCijoLgWsiswGYImlmnbYLgdVpezVwOkBE7ImIW8mS1wsi4umIuDlt7wPuAma3uK9mZtakdq+IMQsoX5xqG3BSjjqz6rSdERHbASJiu6TpeQOSNAV4P/CVEfYvJbvjY9q0afT19eU9dOEMDg52bP9KpRJDQ0Md2z/o7OvXyX2Dzu9fM9qdtFSlLHLWydN2dMFIBwPfAVZExIPV6kTEKmAVQHd3d/T09DRzygmtr6+PTu3fwMAApVKpY/sHnX39Orlv0Pn9a0a7hwe3AeUrKs4GHstZp1bbHWkIkfT+eM54VgH3R8SXc9Y3M7Nx1O6kdQcwV9JRkrqAxUBvRZ1e4Mw0i/BkYHca+qvVthdYkraXANfXC0TSZ4FXAuc32ykzswPNWD5Dq1xbhwcjYr+k84AbgUnAVRGxWdI5af9KYB1wGtAPPA2cVattOvRyYK2ks4FHgEXD55Q0ABwGdEk6HXgv8CRwMXAfcJckgMsi4htj2H0zs44x/AwtYMxWeIf2f6dFRKwjS0zlZSvLtgM4N2/bVL4TOHWENnNGCKXad2RmZpbDWD5Dq1zbk5aZmRXfWD5Dq1y7v9MyMzPLzUnLzMwKw0nLzMwKI/d3WpKm5qj2fESUmojHzMxsRKOZiPFYetWaZTcJeG1TEZmZmY1gNEnrZxHxlloVJP2kyXjMzMxGNJrvtN5eWSBpqF4dMzOzVsmdtCLi2SrFylHHzMysJZqePSjpQ5I+KekwSfNbEZSZmVk1rZjy/nqypwl/AnDSMjOzMdOKpLUxIvYAfw080YLjmZmZVdVs0oqIuGF4A7hO0gJJflS9mVmHG6/HkZQbVdKS9HJJb6tR5dPAocBSSaubiszMzCa04ceRXLtx67ids+7vtCRdALwJmALMA/6R7AGM1fx7RKwF1rYsQjMzm5DG63Ek5fL8uPgk4N8i4luSroyIz9So+z/SDMKdZD9G/lJLojQzswlnvB5HUq7u8GBELAaekvRNYEad6vdExAeAjwHr8wQgab6kLZL6JS2rsl+SVqT9myQdX6+tpKmSbpJ0f3o/PJW/StLNkgYlXVZxnrdKujsda4XS44vNzGziyPWdVkT0An9C9ij6r9eo+nuS/gw4OiL+u95xJU0CLgcWkA09niFpXkW1BcDc9FpKNr2+XttlwPqImEuWPIcT2rPAp4BPVgnnynT84XN5+r6Z2QQzmhUx9kbEZ4G/qVHtg8D9wAfqJLdhJwL9EfFgROwD1gALK+osBK6JzAZgiqSZddouBIYngqwGTk992BMRt5Ilrxek4x0WET9KsyCvGW5jZmYTx2gWzAUgImpNE1kUEZcB3x8ekqtjFlB+vG1k36HVqzOrTtsZEbE9xbtd0vQccWyrcg4zM5tARp206nhd2fYy4MI69at9bxQ56+Rpm1fuY0laSjaMyLRp0+jr62vwlBPf4OBgx/avVCoxNDTUsf2Dzr5+ndw36Pz+NaPVSesgSe8EbgNelaP+NqB8ruRssmd25anTVaPtDkkz013WTODxHHGU/yC6WhwARMQqYBVAd3d39PT01Dl0cfX19dGp/RsYGKBUKnVs/6Czr18n9w06v3/NaHZFjMo7lL8Afgf4OnB9jvZ3AHMlHSWpC1gM9FbU6QXOTLMITwZ2p6G/Wm17gSVpe0m9WNLxnpJ0cpo1eGbO+M3MbBw1dacVEQdVfB4CLhuherX2+yWdB9xI9tTjqyJis6Rz0v6VwDrgNKAfeBo4q1bbdOjlwFpJZwOPAIuGzylpADgM6JJ0OvDeiLiXbJr+1cArgBvSy8zMJpDcSUvSXRFxfLN1KkXEOrLEVF62smw7gHPztk3lO4FTR2gzZ4TyjcAb88ZtZmbjbzR3Wr8laVON/QJe2WQ8ZmZmIxpN0jo2R52hRgMxMzOrJ3fSioiHxzIQMzOb2Hbt2ce1G7ey6IQjmTq5qy0xtOIhkGZmdgBox6NIKrX6d1pmZtah2vEokkpOWmZmlks7HkVSKffwoKRb0/tTkp6seO2W9JCkj49dqGZmdqAbzUSMU9L7odX2S3oV8F/AFa0JzczM7MVaNhEj/aC3p1XHMzMzq9TS2YPDjwMxMzMbC57ybmZmhTHqpJVWW/9fkv4qfX6tpBNbH5qZmdmLNXKndQXwduCM9Pkp4PKWRWRmZjaCRn6ndVJEHC/pJwAR8av0PCszM7Mx1cid1nOSJpEeRy9pGvB8S6MyMzOropGktQK4Dpgu6VLgVuBzLY3KzMysilEnrYj4FvAXZIlqO3B6RKxtNABJ8yVtkdQvaVmV/ZK0Iu3fJOn4em0lTZV0k6T70/vhZfsuSvW3SHpfWfkZku5O5/i+pCMa7ZOZmY2NRmYPfj4i7ouIyyPisoj4maTPN3LyNMx4ObAAmAecIWleRbUFwNz0WgpcmaPtMmB9RMwF1qfPpP2LgeOA+cAVkiZJOhj4CvC7EfEmYBNwXiN9MjPrJLv27ONrtzzArj372h0K0Njw4HuqlC1o8PwnAv0R8WBE7APWAAsr6iwEronMBmCKpJl12i4EVqft1cDpZeVrImJvRDwE9KfjKL0mSxJwGPBYg30yM+sYE+FxJOVyzx6U9DHg48DRkjaV7ToUuK3B888Cyv8ktgEn5agzq07bGcOrc0TEdknTy461ofJYEfGj1L+7gT3A/cC5DfbJzKxjTITHkZQbzZT3bwM3kH2XVf7d01MRsavB86tKWeSsk6dtrvNJehnwMeAtwIPAV4GLgM++5ADSUrJhSqZNm0ZfX1+dUxbX4OBgx/avVCoxNDTUsf2Dzr5+ndw3mHj96wY23VGwO62I2A3s5tc/Km6FbUB5+p7NS4flRqrTVaPtDkkz013WTODxOsd6M0BEPAAgaS0vTswviIhVwCqA7u7u6OnpqdvJourr66NT+zcwMECpVOrY/kFnX79O7ht0fv+a0chEjJdL+pCkv5T0V8OvBs9/BzBX0lHpB8qLgd6KOr3AmWkW4cnA7jT0V6ttL7AkbS8Bri8rX5z6cBTZ5I7bgUeBeek3Z5B9b/ezBvtkZmZjpJEVMa4nu+O6E9jbzMkjYr+k84AbgUnAVRGxWdI5af9KYB1wGtmkiaeBs2q1TYdeDqyVdDbwCLAotdmc7qLuBfYD50bEEPCYpL8G/kPSc8DDwEea6ZuZmbVeI0lrdkTMb1UAEbGOLDGVl60s2w5GmBRRrW0q3wmcOkKbS4FLq5SvBFa+tIWZmU0UjUx5/y9Jv93ySMzMzOoYzZT3u8lm5x0MnCXpQbLhQZHdEL1pbEI0MzPLjGZ48PfGLAozM7Mccg8PRsTDEfEw8DdkM/iGPz8JfHqsAjQzMxvWyHdab4qI0vCHiPgV2Y9yzczMxlQjSeugilXTp9LYLEQzM7NRaSTZfJFsBuE/k03M+COqTCE3MzNrtUaep3UN8IfADuCXwAci4putDszMzNpjoj2OpFxDw3pp5YnNdSuamVnhDD+OBOCj7359m6N5sdH8TuvWiDhF0lO8eDX14d9pHdby6MzMbNxNtMeRlBvNKu+npPdDxy4cMzNrt6mTuybcHdaw0dxpfaLW/oj4UvPhmJmZjWw032kN32F1A2/j148BeT/wH60MyszMrJrRDA/+NYCkHwDHR8RT6fMlwLVjEp2ZmVmZRn5c/FqgfB7kPmBOS6IxMzOroZEp798Ebpd0Hdkswt8HVrc0KjMzsypGnbQi4lJJ3wdOSUVnRcRPWhuWmZnZSzUyPEhE3BkRX0mvphKWpPmStkjql7Ssyn5JWpH2b5J0fL22kqZKuknS/em9fK3Ei1L9LZLeV1beJWmVpJ9Luk/SHzTTLzMza71RJy1JJ0i6TtJdKYncLWlTIyeXNAm4HFgAzAPOkDSvotoCYG56LQWuzNF2GbA+IuYC69Nn0v7FwHHAfOCKdByAi4HHI+IN6Xi3NNInMzMbO418p/Ut4P8AdwPPN3n+E4H+iHgQQNIaYCFwb1mdhcA1ERHABklTJM0km/wxUtuFQE9qvxroAy5M5WsiYi/wkKT+FMOPgD8GjgWIiOeBJ5rsm5mZtVgjSeuXEdFbv1ous4CtZZ+3ASflqDOrTtsZEbEdICK2S5pedqwNlceSNCV9/oykHuAB4LyI2FEZsKSlZHd8TJs2jb6+vvq9LKjBwcGO7V+pVGJoaKhj+wedff06uW8w/v17al/wn48+xztnvYxDuzRu521EI0nr05K+QTbstne4MCL+pYFjVfvTiZx18rTNe76DgdnAbRHxibT6xxeAD7+kcsQqYBVAd3d39PT01DllcfX19dGp/RsYGKBUKnVs/6Czr18n9w3Gv39fu+UB1m65j9cf/foJu3zTsEaS1llkw2gv49fDgwE0krS2AeUrMs4GHstZp6tG2x2SZqa7rJnA43WOtRN4GrgulV8LnN1Af8zMCmciL5BbqZGk9TsR8dstOv8dwFxJRwGPkk2S+FBFnV7gvPSd1UnA7pSMflmjbS+wBFie3q8vK/+2pC8BryGb3HF7RISkfyP7HuyHwKm8+Hs1M7OONZEXyK3USNLaIGleRDT9H/WI2C/pPOBGYBJwVURslnRO2r8SWAecBvST3Q2dVattOvRyYK2ks4FHgEWpzWZJa8kS0n7g3IgYSm0uBL4p6ctkD7c8q9n+mZlZazWStE4Blkh6iOw7reHnab2pkQAiYh1ZYiovW1m2HcC5edum8p1kd0vV2lwKXFql/GHgXaOJ3czMxlcjSWt+y6MwMzPLYdQ/Lk53JFPIHknyfmBKKjMzMxtTjayI8edkPzCenl7/KOnPWh2YmZlZpUaGB88GToqIPQCSPk+2osRXWxmYmZlZpUYWzBUwVPZ5iOo/2jUzM2upRu60/i/w4/Q8LYDTgX9oXUhmZmbVjSppSRLZahF9ZFPfhZ+nZWZm42RUSSutHPGvEfFW4K4xisnMzKyqRr7T2iDpbS2PxMzMxs2uPfv42i0PsGvPvnaHMiqNfKf1u8BHJT0M7KHJFTHMzGz8XbtxK5+74T6Awqw7CI0lrQUtj8LMzMZVkVZ2L9fI8ODHI+Lh8hfw8VYHZmZmY2d4Zfepk7vaHcqoNJK03lOlzHdfZmY25nIPD0r6GNkd1dGSNg0XA4cAt41BbGZmZi8ymu+0vg3cAHwOWFZW/lRE7GppVGZmZlWMZnjwDcCzEXFG+h7r3cAK4BJJU8ckOjMzszKjSVpfA/YBSHoX2dOBrwF2A6saDUDSfElbJPVLWlZlvyStSPs3STq+XltJUyXdJOn+9H542b6LUv0tkt5X5Xy9ku5ptD9mZjZ2RpO0JpUNA34QWBUR342ITwHHNHJySZOAy8kmcswDzpA0r6LaAmBuei0FrszRdhmwPiLmAuvTZ9L+xcBxZA+zvCIdZzieDwCDjfTFzMzG3qiSlqTh78BOBX5Ytq+R33sBnAj0R8SDEbEPWAMsrKizELgmMhuAKZJm1mm7EFidtleTLeo7XL4mIvZGxENAfzoOkg4BPgF8tsG+mJnZGBtNsvkOcIukJ4BngP8EkHQM2RBhI2YBW8s+bwNOylFnVp22MyJiO0BEbJc0vexYG6ocC+AzwBeBp2sFLGkp2R0f06ZNo6+vr1b1QhscHOzY/pVKJYaGhjq2f9DZ16+T+wad379m5E5aEXGppPXATOAHERFp10FAo08urvYcrshZJ0/bXOeT9GbgmIi4QNKcWgeIiFWk7/C6u7ujp6enzimLq6+vj07t38DAAKVSqWP7B519/Tq5bzB2/du1Zx/XbtzKohOOLNyPioeNdpX3DVXKft7E+bcB5WuIzAYey1mnq0bbHZJmprusmcDjdY71duCtkgbI/kymS+qLiJ4G+2VmNuEUdb3Bco2siNFKdwBzJR0lqYtskkRvRZ1e4Mw0i/BkYHca+qvVthdYkraXANeXlS+W9HJJR5FN7rg9Iq6MiNdExByy54T93AnLzDrNohOO5KIFxxZuvcFyjU6gaImI2C/pPOBGYBJwVURslnRO2r8SWAecRjZp4mngrFpt06GXA2slnQ08AixKbTZLWgvcC+wHzo2IofHprZlZew2vN1hkbU1aABGxjiwxlZetLNsO4Ny8bVP5TrIZjtXaXApcWiOeAeCNOUI3M7Nx1u7hQTMzs9yctMzMrDCctMzMrDCctMzMrDCctMzMrDCctMzMrDCctMzMOtSuPfv42i0PsGvPvnaH0jJOWmZmHWp42aZrN26tX7kg2v7jYjMzGxvDyzUVedmmSk5aZmYdqhOWbark4UEzMysMJy0zMysMJy0zMysMJy0zMysMJy0zMysMJy0zMyuMtictSfMlbZHUL2lZlf2StCLt3yTp+HptJU2VdJOk+9P74WX7Lkr1t0h6Xyr7TUnfk3SfpM2Slo91v83MxkInroJRrq1JS9Ik4HJgATAPOEPSvIpqC4C56bUUuDJH22XA+oiYC6xPn0n7FwPHAfOBK9JxAL4QEccCbwHeIWlB63tsZja2OnEVjHLt/nHxiUB/RDwIIGkNsBC4t6zOQuCaiAhgg6QpkmYCc2q0XQj0pPargT7gwlS+JiL2Ag9J6gdOjIgfATcDRMQ+SXcBs8eq02ZmY6UTV8Eo1+7hwVlA+f8ObEtleerUajsjIrYDpPfpec8naQrwfrI7NDOzQhleBWPq5K52hzIm2n2npSplkbNOnrajOp+kg4HvACuG7+BecgBpKdkwJdOmTaOvr6/OKYtrcHCwY/tXKpUYGhrq2P5BZ1+/Tu4bdH7/mtHupLUNKL+HnQ08lrNOV422OyTNjIjtaSjx8ZznWwXcHxFfHingiFiV6tHd3R09PT0jdq7o+vr66NT+DQwMUCqVOrZ/0NnXr5P7Bp3fv2a0e3jwDmCupKMkdZFNkuitqNMLnJlmEZ4M7E5DfrXa9gJL0vYS4Pqy8sWSXi7pKLLJHbcDSPos8Erg/LHoqJmZNa+td1oRsV/SecCNwCTgqojYLOmctH8lsA44DegHngbOqtU2HXo5sFbS2cAjwKLUZrOktWSTNfYD50bEkKTZwMXAfcBdkgAui4hvjPkfgpmZ5dbu4UEiYh1ZYiovW1m2HcC5edum8p3AqSO0uRS4tKJsG9W/7zIzswmk3cODZmbWpE7/QXE5Jy0zs4Lr9B8Ul2v78KCZmTWn039QXM5Jy8ys4IZ/UHwg8PCgmZkVhpOWmZkVhpOWmZkVhpOWmVnBHEhT3Cs5aZmZFcyBNMW9kmcPmpkVzIE0xb2Sk5aZWcEcSFPcK3l40MzMCsNJy8ysAA7kyRflnLTMzArgQJ58Uc7faZmZFcCBPPminO+0zMwmqPIhweHJF1Mnd7U7rLZqe9KSNF/SFkn9kpZV2S9JK9L+TZKOr9dW0lRJN0m6P70fXrbvolR/i6T3lZW/VdLdad8KpccXm5m1i4cEX6qtSUvSJOByYAEwDzhD0ryKaguAuem1FLgyR9tlwPqImAusT59J+xcDxwHzgSvScUjHXVp2rvmt7q+ZWS3Dd1ZP7QsgGwq8aMGxB/yQYLl232mdCPRHxIMRsQ9YAyysqLMQuCYyG4ApkmbWabsQWJ22VwOnl5WviYi9EfEQ0A+cmI53WET8KCICuKasjZnZmCkfAhy+s/rPR58D8JBgFe2eiDELKL/v3QaclKPOrDptZ0TEdoCI2C5petmxNlQ51nNpu7K8pqeffpqrr766XrXCKpVKDAwMtDuMMfGLX/yC/fv3+/oVVNH6tme/+Onu3+DNr3wW4IXtyQcHt+18BTf98hA2btzIm1/5LO+Z9hsc/qsdXH31Y22OemJqd9Kq9r1R5KyTp23e8+U+lqSlZMOIvPrVr6ZUKtU5ZXENDQ11bP/2799PROTu3zPPH8TmZw7juFc8ySsOev5Fn4Gq2+2ud8+eV/LG5ydGfK0+V1cMsX3XkxP+Ggx/3vzMYdz61CE88+wzAC9snzC5xNF6klMOfYaj9STPDT7PcZM6+99es9qdtLYB5YO1s4HK/70YqU5XjbY7JM1Md1kzgcfrHGtb2q4VBwARsQpYBfDqOW+IM//040yd3PXCrf3w2HO17YlYr9a+2267jcde/toJG3sz9S5ceR1Hawdn/uk5uY537cat3HrDfbzzlHfy0Xe/nq/d8sALn4Gq2+2ud9sN9/Gud71rQsTX6nN1x1a26MgJfw2GP69If4cWnfCesr9n7xlx2K+vr4+enp6q+zrBBRdc0HDbdietO4C5ko4CHiWbJPGhijq9wHmS1pAN/+1OyeiXNdr2AkuA5en9+rLyb0v6EvAasgkXt0fEkKSnJJ0M/Bg4E/hqveB/tTe4duNWPvru178wFj2s2vZErFdr3wOPPsfaLRM39mbq3fTLQzjl0Gdy/7lU/kam2m9mqm23s94DDz4woeJr5bk23bF1XGNvtl7lWoEH6rqBLRERbX0BpwE/Bx4ALk5l5wDnpG2RzRJ8ALgbOKFW21T+KrJZg/en96ll+y5O9bcAC8rKTwDuSfsuA1Qv9hmvmxs7B/dGRMTOwdsfjd0AAAePSURBVL2xsq8/dg7uHXF7Itarta/3xh9O6NibqfcnX1gTf/vFr+Q+XhHdfPPN7Q5hzHRy3yI6v3/AxmgwZyhrb43o7u6OLVu2tDuMMdPJQxRXX301pVKJ888/v92hjJlOvn6d3Dfo/P5JujMiTmikbbunvJuZmeXmpGVmZoXhpGVmZoXhpGVmZoXhpGVmZoXhpGVmZoXhpGVmZoXh32k1QdJTZD9S7lRHAE+0O4gx5P4VVyf3DTq/f90RcWgjDdu9jFPRbWn0B3JFIGmj+1dcndy/Tu4bHBj9a7SthwfNzKwwnLTMzKwwnLSas6rdAYwx96/YOrl/ndw3cP9G5IkYZmZWGL7TMjOzwnDSGgVJiyRtlvS8pBFn9kiaL2mLpH5Jy8YzxmZImirpJkn3p/fDR6g3IOluST9tZhbQeKl3PZRZkfZvknR8O+JsRI6+9Ujana7VTyX9VTvibJSkqyQ9LumeEfYX+drV61vRr92Rkm6W9LP0380/r1Jn9Nev0QdxHYgv4LeAbqCPsodRVtSZRPYgyaOBLuC/gXntjj1n//4OWJa2lwGfH6HeAHBEu+PN2ae614PsYaI3kD1w9GTgx+2Ou4V96wH+X7tjbaKP7wKOB+4ZYX8hr13OvhX92s0Ejk/bh5I9sLfpf3u+0xqFiPhZRNT7MfGJQH9EPBgR+4A1wMKxj64lFgKr0/Zq4PQ2xtIqea7HQuCayGwApkiaOd6BNqDIf9dyiYj/AHbVqFLUa5enb4UWEdsj4q60/RTwM2BWRbVRXz8nrdabBWwt+7yNl16oiWpGRGyH7C8cMH2EegH8QNKdkpaOW3SNyXM9inrN8sb9dkn/LekGSceNT2jjpqjXLq+OuHaS5gBvAX5csWvU188rYlSQ9O/Aq6vsujgirs9ziCplE2aKZq3+jeIw74iIxyRNB26SdF/6v8aJKM/1mNDXrIY8cd8FvC4iBiWdBvwrMHfMIxs/Rb12eXTEtZN0CPBd4PyIeLJyd5UmNa+fk1aFiPifTR5iG3Bk2efZwGNNHrNlavVP0g5JMyNie7pFf3yEYzyW3h+XdB3ZMNVETVp5rseEvmY11I27/D8SEbFO0hWSjoiITlnXrqjXrq5OuHaSXkaWsL4VEf9Spcqor5+HB1vvDmCupKMkdQGLgd42x5RXL7AkbS8BXnJnKWmypEOHt4H3AlVnP00Qea5HL3Bmmsl0MrB7eJh0gqvbN0mvlqS0fSLZv/md4x7p2Cnqtaur6Ncuxf4PwM8i4ksjVBv19fOd1ihI+n3gq8A04HuSfhoR75P0GuAbEXFaROyXdB5wI9nsrqsiYnMbwx6N5cBaSWcDjwCLAMr7B8wArkv/lg4Gvh0R329TvHWNdD0knZP2rwTWkc1i6geeBs5qV7yjkbNvfwh8TNJ+4BlgcaRpW0Ug6Ttks+iOkLQN+DTwMij2tYNcfSv0tQPeAXwYuFvST1PZXwKvhcavn1fEMDOzwvDwoJmZFYaTlpmZFYaTlpmZFYaTlpmZFYaTlpmZFYaTllkTJF2cVrDelFbiPqndMTVD0hxJ2yQdVFH+0/RbofKySyQ9Kulv6rWTdIGkRyRdNh79sM7l32mZNUjS24HfI1vJeq+kI8hWWy+siBiQtBV4J3ALgKRjgUMj4vYqTf4+Ir6Q6tVqd7ukXwEjPtLHLA/faZk1bibwRETsBYiIJ4aXuFL2zLHPS7o9vY5J5e+X9GNJP5H075JmpPJLlD1fqU/Sg5L+dyqfo+x5RF9Pd3Q/kPSKtK9P6bluko6QNJC2PyLpXyR9X9mz0f5uOGBJZ0v6eWr79RHufL5DtrrGsMWprJ5G25nl5qRl1rgfAEemJHCFpHdX7H8yIk4ELgO+nMpuBU6OiLeQPUrkL8rqHwu8j2wtx0+nddsgWyT18og4DigBf5AjtjcDHwR+G/igsgfyvQb4FNlzi96TzlfNWuB0ScMjMR9MsdbTaDuz3Dw8aNagtPr2W8mGxH4X+CdJyyLi6lTlO2Xvf5+2Z6d6M8mGEh8qO+T30l3bXkmPky2ZBfBQRAwvg3MnMCdHeOsjYjeApHuB1wFHALdExK5Ufi3whir9+oWkzcCpknYAz0VE3fUlG21nNhpOWmZNiIghsidZ90m6m2yh4auHd5dXTe9fBb4UEb2SeoBLyursLdse4tf/PivLX5G29/Pr0ZLfqAit2rGqPQZiJMNDfTsY3RBfo+3McvHwoFmDJHVLKn++0ZuBh8s+f7Ds/Udp+5XAo2l7Cc0ZAN6atv8wR/3bgXdLOjwN4dUaZvwu2UKmox3ia7SdWS6+0zJr3CHAVyVNIbvr6QfKn+T8ckk/JvufwzNS2SXAtZIeBTYARzVx/i+Qrcr/YeCH9SpHxKOS/pbs6bGPAfcCu0eoW5K0gexp1g9Vq9PKdmZ5eZV3szGQZvKdMNEe2CfpkPRd3MHAdWSPM7muwWNdAgwOT3nPUf8jZH8m5zVyPjPw8KDZgeaS9Gyje8gmgfxrE8caBJZK+pt6FSVdAFwEVD5u3WxUfKdlZmaF4TstMzMrDCctMzMrDCctMzMrDCctMzMrDCctMzMrDCctMzMrjP8PSBdKDiQgM3QAAAAASUVORK5CYII=\n" + ], + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": [ + "iVBORw0KGgoAAAANSUhEUgAAAbUAAAEGCAYAAADi9AsGAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3df7hdVX3n8feHQKwN0BAJIYQoCOmlQS1CBGxVYkFN8qDBagroSGToRBCs0Kd2wjhW6siIfRzsIL8MFhJakSajSKYNIqRcKiMBgiIYMBJIIAkxQOINyaXmkut3/th7w8nJuefX3eeec3Y+r+c5z9l377X2WYsN58ta+3vWVkRgZmZWBPu0uwFmZmZ5cVAzM7PCcFAzM7PCcFAzM7PCcFAzM7PC2LfdDSi6sWPHxtFHH93uZrREf38/Y8aMaXczWmLLli0MDg5yyCGHtLspLVPk6wfuXzd7+OGHX4yI8c3UdVBrsQkTJrBy5cp2N6Mlent7mT59erub0RILFy6kr6+Piy++uN1NaZkiXz9w/7qZpGearevpRzMzKwwHNTMzKwwHNTMzKwwHNTMzKwwHNTMzKwwHNTMzKwwHNTMzKwwHNTMz6xhb+wcYtf+4Cc3Wd1AzM7OOsWTlekbtP+7wZus7qJmZWceYM20ygzu2bmi2voOamZl1jHFjRjO4Y+vmZus7qJmZWWF0RVCTNEPSaklrJM2vcFySrkqPPyrp+Fp1JY2TdJekJ9P3g9L9b5B0j6Qdkq4u+5ze9FyPpK/iLuFuZtaFOj6oSRoFXAPMBKYCZ0uaWlZsJjAlfc0Drquj7nxgeURMAZanfwP8BvgC8FdDNOnjEXFc+no+hy6amVlOOj6oAScCayLi6YgYAG4FZpeVmQ3cHIkVwFhJE2vUnQ0sSrcXAWcARER/RNxHEtzMzKyLdMPz1CYB60v+3gCcVEeZSTXqToiITQARsamBqcSbJA0C3wW+HBFRXkDSPJIRI+PHj6e3t7fOU3eXHTt2FLZvfX19DA4OFrZ/UOzrB+5ft9k+EPxo4yu8e9J+wzpPNwQ1VdhXHkiGKlNP3UZ8PCI2SjqAJKh9Arh5jw+IWAAsAOjp6YmiPsivyA8pXLduHX19fYXtHxT7+oH7122+ee9TLF79C45681HDOk83BLUNwOSSvw8HnquzzOgqdTdLmpiO0iYCNe+PRcTG9H27pFtIpjf3CGpmZtaYOdMmv/p+/jDO0w331B4Cpkg6UtJo4CxgaVmZpcA5aRbkycC2dGqxWt2lwNx0ey5we7VGSNpX0sHp9n7A6cDPh989MzMbN2Y0nzrlKMaNGT2s83T8SC0idkm6CLgTGAXcGBGrJJ2fHr8eWAbMAtYALwPnVqubnvoKYLGk84BngTnZZ0paBxwIjJZ0BvB+4BngzjSgjQLuBm5oZd/NzKwxHR/UACJiGUngKt13fcl2ABfWWzfdvwU4dYg6RwzRlBPqa7GZmbVDN0w/mpmZ1cVBzczM2mZr/wDfvPcptvYP5HI+BzUzM2ubJSvX85U7fsGSletrF65DV9xTMzOzYipN5c+Dg5qZmbVNlsqfF08/mplZYTiomZlZYTiomZlZYTiomZlZYTiomZnZiMv792kZBzUzMxtxef8+LeOUfjMzG3F5/z4t46BmZmYjLu/fp2U8/WhmZoXhoGZmZoXhoGZmZoXhoGZmZiOmVan8GQc1MzMbMa1K5c84+9HMzEZMq1L5Mw5qZmY2YlqVyp/x9KOZmRWGg5qZmRWGg5qZmRWGg5qZmbVUq9P4SzmomZlZS7U6jb+Usx/NzKylWp3GX8pBzczMWqrVafylPP1oZmaF4aBmZmaF4aBmZmaF4aBmZmYtMZKp/BkHNTMza4mRTOXPOPvRzMxaYiRT+TMOamZm1hIjmcqf8fSjmZkVRlcENUkzJK2WtEbS/ArHJemq9Pijko6vVVfSOEl3SXoyfT8o3f8GSfdI2iHp6rLPOUHSY+m5rpKkVvbbzMwa0/FBTdIo4BpgJjAVOFvS1LJiM4Ep6WsecF0ddecDyyNiCrA8/RvgN8AXgL+q0Jzr0vNnnzUjhy6amVlOOj6oAScCayLi6YgYAG4FZpeVmQ3cHIkVwFhJE2vUnQ0sSrcXAWcARER/RNxHEtxelZ7vwIi4PyICuDmrY2Zmr2lHKn+mGxJFJgGl+aAbgJPqKDOpRt0JEbEJICI2STqkjnZsqPAZe5A0j2REx/jx4+nt7a1x6u60Y8eOwvatr6+PwcHBwvYPin39wP1rp2VrB1i8+hWeevopZh05ekQ/uxuCWqX7VlFnmXrq5tmOZGfEAmABQE9PT0yfPr3Jj+xsvb29FLVv69ato6+vr7D9g2JfP3D/2ult7xjgqJXrmTNtMuPGOKiV2wCU/sjhcOC5OsuMrlJ3s6SJ6ShtIvB8He04vEY7zMz2eu1I5c/UfU8tzRas9RrbgjY+BEyRdKSk0cBZwNKyMkuBc9IsyJOBbenUYrW6S4G56fZc4PZqjUjPt13SyWnW4zm16piZ2chqZKT2XPqqlsY+CnjjsFpUJiJ2SboIuDM9/40RsUrS+enx64FlwCxgDfAycG61uumprwAWSzoPeBaYk32mpHXAgcBoSWcA74+Ix4ELgIXA64E70peZmXWIRoLaExHx9moFJP10mO2pKCKWkQSu0n3Xl2wHcGG9ddP9W4BTh6hzxBD7VwJvqbfdZmY2shpJ6X9n+Q5Jg7XKmJnZ3qGdqfyZuoNaRPymwm7VUcbMzPYC7ViVv9ywsx8lfQw4jCSF/Y8i4gfDbpWZmXWddqzKXy6PlP6jgCuBzwFjAQc1M7O9UDtT+TN5LJO1MiL6gb8FXszhfGZmZk0ZblCLiLgj2wBukzRT0uE16pmZmeWuoaAm6XWS3lGlyBeBA4B5khZVKWdmZpa7mvfUJF0CvI3kftlU4J9IVuqo5O6IWAwszq2FZmbWsbb2D7CkTes8VlLPSO0kkmD1YeDfIuJ/VCn7R5K+J+kGSX+ZTxPNzKxTdUIaf6maI7WIOEvShyT9IzCmRvGfR8TXJO0LHJtLC83MrGN1Qhp/qbruqUXEUuDPgZ9IuqFK0dMlfQZ4c0T8LI8GmplZ58rS+Dth6hEa+J1aROwEviypWjg+E3g78KeSjoqI/zLcBpqZmdWr4R9fR0S1idM5EXE18ANJBzXfLDMzs8bl8ePrUm8q2Z6f87nNzMyqyjuo7SPp3ZL2Ad6Q87nNzKxDdMKK/JUMN6iVPzD0r4E/BG7AT4U2MyusTkvlzwxrQeOI2Kfs70Hg6mG1yMzMOl6npfJn6h6pSfpJHmXMzKz7dVoqf6aRkdofSHq0ynEBvzfM9piZmTWtkaB2TB1lBpttiJmZ2XA18uPrZ1rZEDMzs+HKO6XfzMwKrFNT+TMOamZmVrdOTeXPDCul38zM9i6dmsqfaSSl/770fbukl8pe2yStlfTp1jXVzMzarVNT+TONJIq8K30/oNJxSW8Afgxcm0/TzMzMGpPbPbWI2AJMz+t8ZmZmjco1USQiNuV5PjMzs0Y4+9HMzGrq9FT+TMNBTYn/JOlv0r/fKOnE/JtmZmadotNT+TPNpPRfC/wW+BPgS8B24LvAO3Jsl5mZdZBOT+XPNBPUToqI4yX9FCAifi2pM3M7zcwsF1kqf6dr5p7aK5JGAQEgaTzJyM3MzKytmglqVwG3AYdIuhy4D/hKrq0yMzNrQsPTjxHxbUkPA6eSPEPtjIh4IveWmZlZW23tH2DJyvXMmTa5Y1cQKddM9uNXI+IXEXFNRFwdEU9I+morGmdmZu3TLRmPpZqZfnxfhX0zh9uQaiTNkLRa0hpJ8yscl6Sr0uOPSjq+Vl1J4yTdJenJ9P2gkmOXpuVXS/pAyf7edN8j6euQVvbbzKyd5kybzKUzj+n4jMdSjSxofIGkx4CeNHBkr7XAo61qYJqUcg1J4JwKnC1palmxmcCU9DUPuK6OuvOB5RExBVie/k16/CzgWGAGcG16nszHI+K49PV83v01M+sUnb54cSWN3FO7BbiDJCmkdLS0PSK25tqq3Z0IrImIpwEk3QrMBh4vKTMbuDkiAlghaaykicARVerO5rW1KhcBvcB/TfffGhE7gbWS1qRtuL+FfTQzsxw0skr/NmAbcHbrmlPRJKB0QncDcFIdZSbVqDshW6syIjaVTCVOAlZUOFfmJkmDJD84/3IaSHcjaR7JiJHx48fT29tbo4vdaceOHYXtW19fH4ODg4XtHxT7+oH7t7dqOPtR0uuAj5CMgl6tHxFfyq9Zu39khX3lgWSoMvXUbeTzPh4RGyUdQBLUPgHcvEfhiAXAAoCenp6YPn16jY/sTr29vRS1b+vWraOvr6+w/YNiXz9w/4ajG7MeM80kitxOMkW3C+gvebXKBqD0LuXhwHN1lqlWd3M6RUn6nt0fG7JORGxM37eTTMd6zUszK5xuzHrMNLNM1uERMSP3lgztIWCKpCOBjSRJHB8rK7MUuCi9Z3YSsC2dUnyhSt2lwFzgivT99pL9t0i6EjiMJPnkQUn7AmMj4kVJ+wGnA3e3pMdmZm3ULes8VtJMUPuxpLdGxGO5t6aCiNgl6SLgTmAUcGNErJJ0fnr8emAZMAtYA7wMnFutbnrqK4DFks4DngXmpHVWSVpMkkyyC7gwIgYljQHuTAPaKJKAdkPr/wmYmY2sblnnsZK6g1qazh9pnXMlPQ3sJLkHFRHxttY0ESJiGUngKt13fcl2ABfWWzfdv4VkVZRKdS4HLi/b1w+c0Gjbzcxs5DQyUju9Za0wMzPLQd2JIhHxTEQ8Q/IMtW0lf78EfLFVDTQzM6tXM9mPb4uIvuyPiPg18Pb8mmRmZu2wtX+Ab977FFv7B9rdlKY1E9T2KVsncRzNJZyYmVkH6eZU/kwzweh/kWRA/h+SxJE/oyypwszMuk83p/Jnmnme2s3p89TeS5L5+KcR8XiNamZm1uG6OZU/09S0Yfpbr1U1C5qZmY2gRn6ndl9EvEvSdnZfPzH7ndqBubfOzMysAY2k9L8rfT8gIg4seR3ggGZm1r2KkPWYaWSk9pfVjkfElcNvjpmZjbQs6xHYq+6pHZC+9wDvIFn4F+CDwL/n2SgzMxs5Rch6zDTykNC/BZD0Q+D49PErSLoMWNKS1pmZWcsVIesx08yPr98IlE68DpA8MNTMzKytmknp/0eS54vdRpIF+WFgUa6tMjMza0LDI7X0sSz/Gfg10AecGxFfybthZmbWWkXKesw0++Prh4GHc26LmZmNoCJlPWYaDmqSpgGfB96U1m/5Q0LNzCx/Rcp6zDQzUvs28DngMeC3+TbHzMxGSpGyHjPNBLUXImJp7WJmZmYjq5mg9kVJ3wKWAzuznRHxvdxaZWZmLbG1f4AlK9czZ9pkxo0Z3e7m5K6ZoHYucAywH69NPwbgoGZm1uGKmBxSqpmg9ocR8dbcW2JmZi1XxOSQUs2sKLJC0tTcW2JmZi2XJYcUceoRmhupvQuYK2ktyT01p/SbmVlHaCaozci9FWZmZjloZpmsZ4CxJI+c+SAwNt1nZmYdqohLYlXScFCT9FmSH2Afkr7+SdJn8m6YmZnlJ8t6XLJyfbub0lLNTD+eB5wUEf0Akr4K3A98I8+GmZlZfoqe9ZhpJqgJGCz5ezDdZ2ZmHaqIS2JV0kxQuwl4IH2eGsAZwD/k1yQzM7PmNHRPTZKAJSSrimwleabauRHx9y1om5mZDdPekiCSaWikFhEh6fsRcQLwkxa1yczMclL0ZbHKNTP9uELSOyLiodxbY2ZmudpbEkQyzQS19wKfkvQM0I9XFDEz61h7S4JIppmgNjP3VpiZmeWgmQWNPx0Rz5S+gE/n3bBSkmZIWi1pjaT5FY5L0lXp8UclHV+rrqRxku6S9GT6flDJsUvT8qslfaBk/wmSHkuPXZUmzpiZWYdoJqi9r8K+lo3eJI0Crkk/YypwdoWnBMwEpqSvecB1ddSdDyyPiCkkDzydn9aZCpwFHEuyzuW16XlIzzuv5LO8DqaZdaS9LesxU3dQk3SBpMeAnnQ09Gg6alkLPNq6JnIisCYino6IAeBWYHZZmdnAzZFYAYyVNLFG3dnAonR7Ecnv7bL9t0bEzohYC6wBTkzPd2BE3B8RAdxcUsfMrKPsLctilWvkntotwB3AV0hHNantEbE111btbhJQelU2ACfVUWZSjboTImITQERsknRIyblWVDjXK+l2+f6qXn75ZRYuXFirWFfq6+tj3bp17W5GS/zqV79i165dhb12UOzrB+7frl3ifeN/h11P3sfCtT8auYa1WSNB7feB9RFxNoCkc4CPAM9IuqyFga3Sfauos0w9dev9vLrPJWkeyTQlhx56KH19fTU+sjsNDg4Wtm+7du0iIgrbPyj29QP3D+DYUfDKDijuP4U9NRLUvgmcBiDpPcAVwGeA44AFwEdzb11iA1D6A4vDgefqLDO6St3Nkiamo7SJwPM1zrUh3a7WDgAiYgHJPxN6enri4osvrta/rtXb28v06dPb3YyWWLhwIX19fRT12kGxrx/snf3b2j/AkpXrmTNtclc/2fqSSy5pum4jiSKjSkZjZwILIuK7EfEF4OimW1DbQ8AUSUdKGk2SxLG0rMxS4Jw0C/JkYFs6tVit7lJgbro9F7i9ZP9Zkl4n6UiShJAH0/Ntl3RymvV4TkkdM7O221vvo5VqZKQ2StK+EbELOJV0eq2J8zQkInZJugi4ExgF3BgRqySdnx6/HlgGzCJJ6niZZG3KIeump74CWCzpPOBZYE5aZ5WkxcDjwC7gwojInkpwAbAQeD3J/cU7WtVvM7NG7W2rh1TSSDD6DnCvpBeB/wB+BCDpaGBbC9r2qohYRhK4SvddX7IdwIX11k33byEJzpXqXA5cXmH/SuAtjbTdzGyk7G2rh1RSd1CLiMslLQcmAj9MAwkkU5h+8rWZmbVdo6v0r6iw75f5NcfMzBpVlASRPDSzooiZmXUQJ4i8pmUJHmZmNjKcIPIaBzUzsy7nBJHXePrRzMwKw0HNzKxL7a0r8VfjoGZm1qWcILIn31MzM+tSThDZk4OamVmXcoLInjz9aGbWZbb2D7Bs7YDvpVXgoGZm1mWWrFzP4tWv+F5aBZ5+NDPrMnOmTeapp5/yvbQKPFIzM+sy48aMZtaRo/f6dR4rcVAzM+sC/k1afRzUzMy6gH+TVh/fUzMz6wL+TVp9HNTMzLqAf5NWH08/mpl1MN9La4yDmplZB/O9tMZ4+tHMrIP5XlpjHNTMzDqY76U1xtOPZmYdyPfSmuOgZmbWgXwvrTmefjQz60C+l9Ycj9TMzDpINu0I8KlTjvL6jg1yUDMz6yCedhweTz+amXUQTzsOj0dqZmYdwNOO+XBQMzPrAJ52zIenH83M2mRr/wBLVq5nzrTJnnbMiYOamVmbZKMzSKYcvXLI8DmomZm1iUdn+fM9NTOzEeakkNZxUDMzG2FOCmkdTz+amY2QLDHktKkTAE87tkJHj9QkjZN0l6Qn0/eDhig3Q9JqSWskza+nvqRL0/KrJX2gZP8Jkh5Lj10lSen+T0p6QdIj6evPW9l3MyuebIR29+ObPe3YIh0d1ID5wPKImAIsT//ejaRRwDXATGAqcLakqdXqp8fPAo4FZgDXpucBuA6YB0xJXzNKPu6fI+K49PWtXHtqZoWV3UM7beoELp15jEdoLdTpQW02sCjdXgScUaHMicCaiHg6IgaAW9N61erPBm6NiJ0RsRZYA5woaSJwYETcHxEB3DzEZ5qZ1c0jtJHT6ffUJkTEJoCI2CTpkAplJgGld1s3ACfVqD8JWFFWZxLwSrpdvj/zEUnvAX4JXBIRFe/ySppHMtpj/Pjx9Pb21upnV9qxY0dh+9bX18fg4GBh+wfFvn7Q/v5tHwh+tPEV3j1pPw4D/qxnPw7b+Sy9vfkkh7S7f52q7UFN0t3AoRUOfb7eU1TYF03WqXau/wt8JyJ2SjqfZOT3J5VOHhELgAUAPT09MX369BrN6U69vb0UtW/r1q2jr6+vsP2DYl8/aF//smSQlzXI4tVPctSbkx9VfzDnzyn69WtW26cfI+K0iHhLhdftwOZ0SpD0/fkKp9gAlE5QHw48l24PVX+oOhvS7T3OFRFbImJnuv8G4ITmemxmRfbaKiHh+2dt0PaRWg1LgbnAFen77RXKPARMkXQksJEkAeRjNeovBW6RdCVwGElCyIMRMShpu6STgQeAc4BvQBIUs6lM4EPAE3l21My6W6V0fd87G3mdHtSuABZLOg94FpgDIOkw4FsRMSsidkm6CLgTGAXcGBGrqtWPiFWSFgOPA7uACyNiMK1zAbAQeD1wR/oC+AtJH0rLbwU+2bJem1nXeHW6cWCQ/738SQCv4dhGHR3UImILcGqF/c8Bs0r+XgYsq7d+euxy4PIK+1cCb6mw/1Lg0gaab2YFUzoau/vxzcyZNvnV6cbPnnq0pxs7QEcHNTOzTlA+Glvx9BbuWf0CsPuixJ5ubD8HNTOzEqXPOAN2C2bZaOy0qRM4+c2bXw1knm7sHA5qZrZXKp9KzN5L740Be0wtZqOxo07Zv11Ntyoc1MysK5WOqLJAUxqolq0dYPKxO3YLWJVGX9lUYvZe6d6Ypxa7h4OaWUFU+pLvhPaUj4QqBZihylQrmwWllwd28buj990taSMJUK/wAo/vFrAypaOvbCqxfEox46nF7uKgZh2jUmZZvV/O1eoO9eVa7Uv1pZ378LP+sTz1wo66v4ArlanWh2baVa1s+Zd8rfOVjmSGG2Aqldk9wLywx3umWplqZbOg9PLAYPpj59eSNk6bOoHx/JhPnT51j4CVqTSV6CnF7ueg1mLbdsarX4zNfjnUKpP3+er9zGVrB3jbOwZy+8zyL8HyL+d6/q+9PCut2jRTptKX6pQx+/Nk/+v48r88XvcXcKUy1QJMM+2qVrb8S772+V4byTT7mdXKlAaY0sBSKcAMVaZa2Swobe0f4HdHj9ojaWPWkaM5avz+FQOWR1/F5aDWYr/eGa9+MTb75VCrTN7nq/8zX+Go9Mm9eXxm+Zdg+ZdzPf/XXvqFV/77oUa+VF/6xf9jwosv8d9PP6XuL+BKZaoFmGbaVa1s+Zd8rfOVjmSGG2CGmsLLgkd5YKkUYIYqU60s4OxD211E+NXC14Q3TYk1z2+P63vX7PG+ZcfO2LJjZ8VjjZTJ+3z1fubnbrwz188sN1SdSuerVr/SsVpuuumm+PrXv95wvVp9KG17M+3K0z333NPWz2819697ASujye9cJfWtVXp6emL16tXtbkZLFHmV8IULF9LX18fFF1/c7qa0TJGvH7h/3UzSwxExrZm6bV+l38zMLC8OamZmVhgOamZmVhgOamZmVhgOamZmVhgOamZmVhgOamZmVhj+nVqLSdoOFPOHanAw8GK7G9FC7l93c/+6V09EHNBMRS+T1Xqrm/0RYaeTtLKofQP3r9u5f91L0spm63r60czMCsNBzczMCsNBrfUWtLsBLVTkvoH71+3cv+7VdN+cKGJmZoXhkZqZmRWGg5qZmRWGg1rOJM2RtErSbyUNmW4raYak1ZLWSJo/km1slqRxku6S9GT6ftAQ5dZJekzSI8NJzR0pta6FElelxx+VdHw72tmsOvo3XdK29Ho9Iulv2tHOZki6UdLzkn4+xPFuv3a1+tfN126ypHskPZF+Z362QpnGr1+zTxf1q/IL+AOgB+gFpg1RZhTwFPBmYDTwM2Bqu9teR9/+Dpifbs8HvjpEuXXAwe1ub519qnktgFnAHYCAk4EH2t3unPs3HfiXdre1yf69Bzge+PkQx7v22tXZv26+dhOB49PtA4Bf5vHfnkdqOYuIJyKi1goiJwJrIuLpiBgAbgVmt751wzYbWJRuLwLOaGNb8lLPtZgN3ByJFcBYSRNHuqFN6tZ/1+oSEf8ObK1SpJuvXT3961oRsSkifpJubweeACaVFWv4+jmotcckYH3J3xvY82J2ogkRsQmSfyGBQ4YoF8APJT0sad6Ita459VyLbr1eUH/b3ynpZ5LukHTsyDRtRHTztatX1187SUcAbwceKDvU8PXzMllNkHQ3cGiFQ5+PiNvrOUWFfR3x24pqfWvgNH8cEc9JOgS4S9Iv0v/j7ET1XIuOvV51qKftPwHeFBE7JM0Cvg9MaXnLRkY3X7t6dP21k7Q/8F3g4oh4qfxwhSpVr5+DWhMi4rRhnmIDMLnk78OB54Z5zlxU65ukzZImRsSmdArg+SHO8Vz6/ryk20imwDo1qNVzLTr2etWhZttLv0giYpmkayUdHBFFWCy3m69dTd1+7STtRxLQvh0R36tQpOHr5+nH9ngImCLpSEmjgbOApW1uUz2WAnPT7bnAHqNSSWMkHZBtA+8HKmZudYh6rsVS4Jw0E+tkYFs2DdsFavZP0qGSlG6fSPK9sGXEW9oa3Xztaurma5e2+x+AJyLiyiGKNXz9PFLLmaQPA98AxgP/KumRiPiApMOAb0XErIjYJeki4E6S7LQbI2JVG5tdryuAxZLOA54F5gCU9g2YANyW/ne2L3BLRPygTe2taahrIen89Pj1wDKSLKw1wMvAue1qb6Pq7N9HgQsk7QL+Azgr0tSzTifpOyQZgAdL2gB8EdgPuv/aQV3969prB/wx8AngMUmPpPv+G/BGaP76eZksMzMrDE8/mplZYTiomZlZYTiomZlZYTiomZlZYTiomZlZYTiombWYpM+nq5A/mq6kflK72zQcko6QtEHSPmX7H0l/K1W67zJJGyV9qVY9SZdIelbS1SPRDysm/07NrIUkvRM4nWQ18p2SDiZZLb9rRcQ6SeuBdwP3Akg6BjggIh6sUOXrEfG1tFy1eg9K+jUw5CObzGrxSM2stSYCL0bEToCIeDFbRkzJc+e+KunB9HV0uv+Dkh6Q9FNJd0uakO6/TMnztXolPS3pL9L9Ryh5JtUN6Yjwh5Jenx7rVfpcP0kHS1qXbn9S0vck/UDJ8/H+LmuwpPMk/TKte8MQI6fvkKxOkjkr3VdLs/XM6uKgZtZaPwQmp0HiWkmnlB1/KSJOBK4G/j7ddx9wckS8neRRMX9dUv4Y4AMk62l+MV07D5JFbK+JiGOBPuAjdYAkq00AAAHwSURBVLTtOOBM4K3AmUoe2ngY8AWSZ1e9L/28ShYDZ0jKZnvOTNtaS7P1zOri6UezFkpXTz+BZMrtvcA/S5ofEQvTIt8pef96un14Wm4iyVTl2pJT/ms66tsp6XmSZckA1kZEttTQw8ARdTRveURsA5D0OPAm4GDg3ojYmu5fAvx+hX79StIq4FRJm4FXIqLmGp/N1jOrl4OaWYtFxCDJk9B7JT1Gshj0wuxwadH0/RvAlRGxVNJ04LKSMjtLtgd57b/h8v2vT7d38dqMzO+UNa3SuSo96mMo2VTiZhqbQmy2nllNnn40ayFJPZJKn291HPBMyd9nlrzfn27/HrAx3Z7L8KwDTki3P1pH+QeBUyQdlE4RVpvG/C7JYrONTiE2W8+sJo/UzFprf+AbksaSjJrWAKVPA3+dpAdI/gfz7HTfZcASSRuBFcCRw/j8r5E8WeETwL/VKhwRGyX9T5InED8HPA5sG6Jsn6QVJE9EX1upTJ71zOrhVfrN2iTNRJzWaQ90lLR/ei9wX+A2ksfV3NbkuS4DdmQp/XWU/yTJP5OLmvk8M08/mlm5y9LnW/2cJEnl+8M41w5gnqQv1Soo6RLgUuClWmXNhuKRmpmZFYZHamZmVhgOamZmVhgOamZmVhgOamZmVhgOamZmVhj/H/gIgqWU8UdYAAAAAElFTkSuQmCC\n" + ], + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": [ + "iVBORw0KGgoAAAANSUhEUgAAAa0AAAEGCAYAAADWjcoaAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3df5hdVX3v8feHYGjLD0MkiTFBEyUMDdbKjxL80Tpe/JHw6A1Vcw19WlIutxGFXsF6a7g+/oZr7KNWESRGSwmtyg3XUqYaREwdW9QIgWowgZghDBCJQZJOZIImZPjeP/Y6cBzOzNnnx8yZvfN5Pc95zj57r7X3+mYTvtlrr722IgIzM7MiOKzTDTAzM8vLScvMzArDScvMzArDScvMzArDScvMzArj8E43oMimTJkSJ5xwQqebMWb27dvHkUce2elmjIndu3czNDTE9OnTO92UMVPm81fm2KD88d11112PRcS0Zuo6abVgxowZbNy4sdPNGDO9vb10d3d3uhlj4rrrrmNgYIBLLrmk000ZM2U+f2WODcofn6QHm63r7kEzMysMJy0zMysMJy0zMysMJy0zMysMJy0zMysMJy0zMysMJy0zMysMJy0zMxs3e/YdYNJRU2c0W99Jy8zMxs2NGx9m0lFTZzdb30nLzMzGzZLTj2docM+OZus7aZmZ2biZeuRkhgb37Gq2vpOWmZkVhpOWmZkVhpOWmZkVhpOWmZkVhpOWmZkVhpOWmZkVhpOWmZmNuT37DvCF797Pnn0HWtpPx5OWpIWStkrqk7SixnZJujJt3yTp1Hp1JU2VdJukben72LT+eZK+I2lQ0lUjtKdH0k/GIlYzs0PVjRsf5uO33MeNGx9uaT8dTVqSJgFXA4uA+cC5kuYPK7YImJc+y4FrctRdAayPiHnA+vQb4NfAB4D3jtCetwCDbQnOzMyetuT047ls0UksOf34lvbT6SutM4C+iNgeEQeAG4DFw8osBq6PzAZgiqSZdeouBtak5TXAOQARsS8ibidLXr9B0lHAe4DL2xqhmZkx9cjJvOM1L2HqkZNb2s/hbWpPs2YB1deKO4AFOcrMqlN3RkTsBIiInZKm52jLx4BPAU+MVkjScrIrPqZNm0Zvb2+OXRfT4OBgaeMbGBhgaGiotPFBuc9fmWOD8sfXik4nLdVYFznL5KmbrxHSy4ETIuJSSXNGKxsRq4HVAF1dXdHd3d3MIQuht7eXssbX39/PwMBAaeODcp+/MscG5Y+vFZ3uHtwBVHdwzgYeyVlmtLq7Uhci6fvROu14BXCapH7gduBESb25ozAzs3HR6aR1JzBP0lxJk4GlQM+wMj3AeWkU4ZnA3tT1N1rdHmBZWl4G3DxaIyLimoh4QUTMAV4N/DQiulsPz8zM2qmj3YMRcVDSxcCtwCTg2ojYLOnCtH0VsA44G+gju990/mh1065XAmslXQA8BCypHDNdTR0DTJZ0DvCGiNgy5sGamVnLOn1Pi4hYR5aYqtetqloO4KK8ddP63cBZI9SZU6c9/cBL6zTbzMw6oNPdg2ZmVmLtmgmjwknLzMzGTLtmwqjoePegmZmVV2UGjFZnwqhw0jIzszFTmQmjXdw9aGZmheGkZWZmheGkZWZmheGkZWZmheGkZWZmheGkZWZmheGkZWZmbdXuWTCqOWmZmVlbtXsWjGp+uNjMzNqq3bNgVHPSMjOztmr3LBjV3D1oZmaF4aRlZmaF4aRlZmaF0fGkJWmhpK2S+iStqLFdkq5M2zdJOrVeXUlTJd0maVv6Pjatf56k70galHRVVfnfkfQNSfdJ2ixp5VjHbWZmjeto0pI0CbgaWATMB86VNH9YsUXAvPRZDlyTo+4KYH1EzAPWp98AvwY+ALy3RnM+GREnAacAr5K0qC1BmplZ23T6SusMoC8itkfEAeAGYPGwMouB6yOzAZgiaWaduouBNWl5DXAOQETsi4jbyZLX0yLiiYj4Tlo+ANwNzG5zrGZm1qJOD3mfBVQ/fbYDWJCjzKw6dWdExE6AiNgpaXreBkmaArwZ+OwI25eTXfExbdo0ent78+66cAYHB0sb38DAAENDQ6WND8p9/socGxQ3vscPBP/+syf5w1nP4ejJGpNjdDpp1YoqcpbJU7exxkiHA18FroyI7bXKRMRqYDVAV1dXdHd3t3LICa23t5eyxtff38/AwEBp44Nyn78yxwbFje8L372ftVvv4yUvfsmYPafV6aS1A6h+ZHo28EjOMpNHqbtL0sx0lTUTeDRne1YD2yLiMznLm5lZMpYzYVR0+p7WncA8SXMlTQaWAj3DyvQA56VRhGcCe1PX32h1e4BlaXkZcHO9hki6HHgucEmrQZmZHYoqM2FMPXLymB2jo1daEXFQ0sXArcAk4NqI2CzpwrR9FbAOOBvoA54Azh+tbtr1SmCtpAuAh4AllWNK6geOASZLOgd4A/BL4P3AfcDdkgCuiogvjWH4ZmbWoE53DxIR68gSU/W6VVXLAVyUt25avxs4a4Q6c0ZoytjcNTQzs7bpdPegmZlZbk5aZmZWGE5aZmZWGE5aZmZWGE5aZmbWkj37DvCF797Pnn0HxvxYTlpmZtaSGzc+zMdvuY8bNz5cv3CLOj7k3czMim08ZsKocNIyM7OWVGbCGA/uHjQzs8LIfaUlaWqOYk9FxEAL7TEzMxtRI92Dj6TPaNMdTQJe2FKLzMzMRtBI0ro3Ik4ZrYCk/2ixPWZmZiNq5J7WK4avkDRUr4yZmVm75E5aEfHrGquVo4yZmZXQeD5UXNHy6EFJfyLpvZKOkbSwHY0yM7OJbzwfKq5ox3NaLwE+DfwvYArwzTbs08zMJrjxfKi4oh3PaW2MiH3AR4DHGq0saaGkrZL6JK2osV2SrkzbN0k6tV5dSVMl3SZpW/o+Nq1/nqTvSBqUdNWw45wm6Z60ryuVXl9sZma1VR4qnnrk5HE7ZqtJKyLilsoCcJOkRZJm56ksaRJwNbAImA+cK2n+sGKLgHnpsxy4JkfdFcD6iJgHrE+/AX4NfAB4b43mXJP2XzmWuzrNzCaYhpKWpCMk/cEoRT4EHA0sl7Qmxy7PAPoiYntEHABuABYPK7MYuD4yG4ApkmbWqbsYqBx/DXAOQETsi4jbyZJXdVwzgWMi4gcp+V5fqWNmZhNH3Xtaki4FXkZ2v2o+8I/AnSMU/3ZErAXW5jz+LKD6Dt4OYEGOMrPq1J0RETsBImKnpOk52rGjxjHMzGwCyTMQYwHwLxHxZUnXRMTHRin7yjSCcDfZw8ifrrPvWveNImeZPHXzyr0vScvJuhGZNm0avb29TR5y4hscHCxtfAMDAwwNDZU2Pij3+StzbFD++FpRN2lFxFJJ/1XSPwBH1in+k4j4pKTDgZNzHH8HUD3sZDbZVFF5ykwepe4uSTPTVdZM4NEc7ai+D1erHQBExGpgNUBXV1d0d3fX2XVx9fb2Utb4+vv7GRgYKG18UO7zV+bYoPzxtSLXPa2I6AH+B3C3pC+OUvRNkv4SeHFE/DjHru8E5kmaK2kysBToGVamBzgvjSI8E9ibuv5Gq9sDLEvLy4Cb68S3E3hc0plp1OB59eqYmR2KOvFAcbXcz2lFxH7gckmjDch/O3AK8BZJL4mIv6izz4OSLgZuJZts99qI2CzpwrR9FbAOOBvoA54Azh+tbtr1SmCtpAuAh4AllWNK6geOASZLOgd4Q0RsAd4JXAf8NnBL+piZWZXKA8XAuL1Dq1rDDxdHxGiPPi+JiKuAb1aejcqxv3Vkial63aqq5QAuyls3rd8NnDVCnTkjrN8IvDRPm83MDlWdeKC4WrtfAvmiquVnPShsZmbF1okHiqu1O2kdJukPJR0GPK/N+zYzs0Ncq0lr+FDxvwZ+H/giHshgZmZt1tKEuRFx2LDfQ8BVIxQ3MzNrSe4rLUl3t6OMmZlZsxq50vpdSZtG2S7guS22x8zMbESNJK2TcpQZarYhZmZm9TTycPGDY9kQMzObuPbsO8CNGx9myenHd2y4O7R/yLuZmZVQZSaMGzeONr/E2Gtp9KCZmR0aOj0TRoWTlpmZ1VWZCaPTGhnyfnv6flzSL4d99kp6QNK7xq6pZmZ2qGtkIMar0/fRtbZLeh7wfeDz7WmamZnZb2rbQIw0s3p3u/ZnZmY2XFtHD6aXKZqZmY0JD3k3M7PCaDhppdfe/6mkD6bfL5R0RvubZmZmnbZn3wG+8N372bPvQKebAjR3pfV54BXAuen348DVzTZA0kJJWyX1SXrWiyNTkrwybd8k6dR6dSVNlXSbpG3p+9iqbZel8lslvbFq/bmS7knH+Kak45qNycysLCbKQ8UVzSStBRFxEfBrgIj4T6CpOT0kTSJLeIuA+cC5kuYPK7YImJc+y4FrctRdAayPiHnA+vSbtH0pcDKwEPi8pEmSDgc+C7w2Il4GbAIubiYmM7MyWXL68Vy26KSOP1Rc0UzSejIljACQNA14qsnjnwH0RcT2iDgA3AAsHlZmMXB9ZDYAUyTNrFN3MbAmLa8Bzqlaf0NE7I+IB4C+tB+lz5GSBBwDPNJkTGZmpVF5qLiT8w1Wa2ZGjCuBm4Dpkq4A3gZ8oMnjzwKqrzl3AAtylJlVp+6MykjGiNgpaXrVvjYM31dE/EDSO4F7gH3ANuCiWg2WtJzsio9p06bR29tbP8qCGhwcLG18AwMDDA0NlTY+KPf5K3NsUP74WtFw0oqIL0u6CziL7OrknIi4t8njq9YhcpbJUzfX8SQ9B3gncAqwHfgccBlw+bMKR6wGVgN0dXVFd3d3nUMWV29vL2WNr7+/n4GBgdLGB+U+f2WODcofXyuaGT34iYi4LyKujoirIuJeSZ9o8vg7gOqO0tk8u1tupDKj1d2VuhBJ34/W2dfLASLi/ogIYC3wyuZCMjOzsdLMPa3X11i3qMnj3wnMkzRX0mSyQRI9w8r0AOelUYRnAntT199odXuAZWl5GXBz1fqlko6QNJdscMcdwM+A+en+XCXGZq8ezcxsjOTuHkz3fN4FvFjSpqpNRwPfa+bgEXFQ0sXArcAk4NqI2CzpwrR9FbAOOJts0MQTwPmj1U27XgmslXQB8BCwJNXZLGktsAU4CFwUEUPAI5I+AvybpCeBB4E/byYmMzMbO43c0/oKcAvwcdIQ8uTxiNjTbAMiYh1ZYqpet6pqORhhUEStumn9brJ7brXqXAFcUWP9KmDVs2uYmR16JsqbiodrZJb3vcBennmo2MzMSqryUDEwId6jVdHw6EFJRwBvBeZU14+Ij7avWWZm1kkT5U3FwzXznNbNZFdcdwH729scMzObCCbKm4qHayZpzY6IhW1viZmZWR3NDHn/vqTfa3tLzMzM6mhkyPs9ZDNOHA6cL2k7WfegyAb5vWxsmmhmZpZppHvwTWPWCjMzsxxydw9GxIMR8SDwUbJZKSq/fwl8aKwaaGZmVtHMPa2XRcRA5Ud6n9Yp7WuSmZl1ykR7U/FwzSStw4a9CXgqzY1CNDOzCWaival4uGaSzafIRhD+P7KBGf+NGtMimZlZ8UzUh4ormnmf1vXpfVqvJRs5+JaI2NL2lpmZ2bibqA8VVzTVrZdmU99ct6CZmVkbNfKc1u0R8WpJj/ObbwiuPKd1TNtbZ2ZmVqWRWd5fnb6PHrvmmJmZjayRK633jLY9Ij7denPMzMxG1siQ96PT53TgncCs9LkQmN/+ppmZ2XiY6M9mVWtkRoyPRMRHgOOAUyPiryLir4DTgNnNNkDSQklbJfVJWlFjuyRdmbZvknRqvbqSpkq6TdK29F39XNllqfxWSW+sWj9Z0mpJP5V0n6S3NhuTmVmRTPRns6o1M3rwhUB1Oj5A9kLIhkmaBFwNvB7YAdwpqWfYEPpFwLz0WQBcAyyoU3cFsD4iVqZktgJ4n6T5wFLgZOAFwLclnRgRQ8D7gUcj4kRJhwFTm4nJzKxoJvqzWdWaSVr/ANwh6SayUYR/DKxp8vhnAH0RsR1A0g3AYqA6aS0Gro+IADZImiJpJlmiHKnuYqA71V8D9ALvS+tviIj9wAOS+lIbfgD8d+AkgIh4CnisyZjMzAploj+bVa2Zh4uvkPRN4NVp1fkR8R9NHn8WUH09uoPsaqpemVkjrK/UnRERO1N7d0qaXrWvDcP3JWlK+v0xSd3A/cDFEbFreIMlLQeWA0ybNo3e3t76URbU4OBgaeMbGBhgaGiotPFBuc9fmWOD8sfXimYfLr4LuKsNx1et3ecsk6du3uMdTnZf7nsR8Z40UvKTwJ89q3DEamA1QFdXV3R3d9c5ZHH19vZS1vj6+/sZGBgobXxQ7vNX5tig/PG1ouGkJel0svs/L0r1W3kJ5A6guhN1NvBIzjKTR6m7S9LMdJU1E3i0zr52A08AN6X1NwIXNBGPmZmNoWZmef8y8PfAW4E3k70c8s1NHv9OYJ6kuZImkw2S6BlWpgc4L40iPJPsXV4769TtAZal5WXAzVXrl0o6QtJcssEdd6T7Zf/CM/fBzuI376uZmdkE0Ez34C8iYnhiaUpEHJR0MXArMAm4NiI2S7owbV8FrAPOBvrIrobOH61u2vVKYK2kC4CHgCWpzmZJa8kS0kHgojRyELKBGv8g6TPALyrHMTOziaOZpPUhSV8C1gP7Kysj4p+aaUBErCNLTNXrVlUtB3BR3rpp/W6yq6Vada6gxqtU0luY/6iRtpuZFdmefQe4cePDLDn9eKYeObnTzcmlmaR1PtnQ8OcAT6V1ATSVtMzMrDMqDxUD5R3yDvx+RPxe21tiZmbjqkgPFVc0MxBjQ5pZwszMCqzyUHFRugahuSutVwPLJD1Adk+rlSHvZmZmuTWTtBa2vRVmZmY5NNw9mEbZTSF7NuvNwJS0zszMbEw1nLQkvZvsAePp6fOPkv6y3Q0zMzMbrpmBGBcACyLigxHxQeBM4C/a2ywzMxsrRXrp43DNJC0BQ1W/h6g9Ea2ZmU1ARXrp43DNDMT4e+CH6X1aAOcAf9e+JpmZ2Vgq4vNZFQ0lLUkimwG9l2zou2jtfVpmZjbOivTSx+EaSloREZL+OSJOA+4eozaZmZnV1OyMGH/Q9paYmZnV0cw9rdcC75D0ILAPz4hhZmbjpJmktajtrTAzM8uhme7Bd0XEg9Uf4F3tbpiZmbVXkZ/Pqmgmab2+xrqmr74kLZS0VVKfpBU1tkvSlWn7Jkmn1qsraaqk2yRtS9/HVm27LJXfKumNNY7XI+knzcZjZjZRFfn5rIrc3YOS3kl2RfViSZsqq4GjgO81c3BJk4CryRLhDuBOST0RsaWq2CJgXvosAK4BFtSpuwJYHxErUzJbAbwvvVJlKXAy8ALg25JOjIih1J63AIPNxGJmNtEV+fmsikautL5CNkFuD89Mlvsm4LSI+NMmj38G0BcR2yPiAHADsHhYmcXA9ZHZAEyRNLNO3cXAmrS8huwB6Mr6GyJif0Q8APSl/SDpKOA9wOVNxmJmNqEV8f1ZwzUyEONE4OGIOBdA0nnAW4EHJX04IvY0cfxZQPV16g6yq6l6ZWbVqTsjInYCRMROSdOr9rWhxr4APgZ8CnhitAZLWg4sB5g2bRq9vb2jFS+0wcHB0sY3MDDA0NBQaeODcp+/MscG5Y+vFY0krS8ArwOQ9EfASuAvgZcDq4G3NXH8WnMWRs4yeermOp6klwMnRMSlkuaMtoOIWE0WL11dXdHd3V3nkMXV29tLWePr7+9nYGCgtPFBuc9fmWOD8sfXikaS1qSqq6m3A6sj4mvA1yT9qMnj7wCqO1dnA4/kLDN5lLq7JM1MV1kzgUfr7OsVwGmS+sn+TKZL6o2I7ibjMjOzMdDIPa1JkipJ7izgX6u2NfO8F8CdwDxJcyVNJhsk0TOsTA9wXhpFeCawN3X9jVa3B1iWlpcBN1etXyrpCElzyQZ33BER10TECyJiDtmcij91wjKzMijDMPdqjSSbrwLflfQY8Cvg3wEknQDsbebgEXFQ0sXArcAk4NqI2CzpwrR9FbAOOJts0MQTwPmj1U27XgmslXQB8BCwJNXZLGktsAU4CFxUGTloZlZGlWHuQGEnya2WO2lFxBWS1gMzgW9FROX+0WFk97aaEhHryBJT9bpVVcsBXJS3blq/m+xqsFadK4ArRmlPP/DSHE03M5vwyjDMvVqjs7xvqLHup+1rjpmZtVORX0NSSzMzYpiZmXWEk5aZmRWGk5aZmRWGk5aZmRWGk5aZWQmV7fmsCictM7MSKsNrSGppdiYLMzObwMr2fFaFk5aZWQmV7fmsCncPmplZYThpmZlZYThpmZmVSFlHDVY4aZmZlUhZRw1WeCCGmVmJlHXUYIWTlplZiZR11GCFuwfNzKwwnLTMzKwwOp60JC2UtFVSn6QVNbZL0pVp+yZJp9arK2mqpNskbUvfx1ZtuyyV3yrpjWnd70j6hqT7JG2WtHKs4zYza6eyjxqs6GjSkjQJuBpYBMwHzpU0f1ixRcC89FkOXJOj7gpgfUTMA9an36TtS4GTgYXA59N+AD4ZEScBpwCvkrSo/RGbmY2Nso8arOj0QIwzgL6I2A4g6QZgMbClqsxi4PqICGCDpCmSZgJzRqm7GOhO9dcAvcD70vobImI/8ICkPuCMiPgB8B2AiDgg6W5g9lgFbWbWbmUfNVjR6aQ1C6j+Z8EOYEGOMrPq1J0RETsBImKnpOlV+9pQY19PkzQFeDPw2VoNlrSc7IqPadOm0dvbO3J0BTc4OFja+AYGBhgaGiptfFDu81fm2KD5+LqATXf6Smssqca6yFkmT92GjifpcOCrwJWVK7hnFY5YDawG6Orqiu7u7jqHLK7e3l7KGl9/fz8DAwOljQ/Kff7KHBuUP75WdHogxg6g+lp2NvBIzjKj1d2VuhBJ34/mPN5qYFtEfKbhSMzMbMx1OmndCcyTNFfSZLJBEj3DyvQA56VRhGcCe1PX32h1e4BlaXkZcHPV+qWSjpA0l2xwxx0Aki4HngtcMhaBmpm126EyYrBaR7sHI+KgpIuBW4FJwLURsVnShWn7KmAdcDbQBzwBnD9a3bTrlcBaSRcADwFLUp3NktaSDdY4CFwUEUOSZgPvB+4D7pYEcFVEfGnM/xDMzJpUGTEIlHoWjGqdvqdFRKwjS0zV61ZVLQdwUd66af1u4KwR6lwBXDFs3Q5q3+8yM5uwDpURg9U6nrTMzKw5ZZ9nsJZO39MyMzPLzUnLzKxgDsUBGBVOWmZmBXOoTNlUi+9pmZkVzKE4AKPCScvMrGAOxQEYFe4eNDOzwnDSMjMriEN5AEaFk5aZWUEcygMwKnxPy8ysIA7lARgVTlpmZgVxKA/AqHD3oJnZBOd7Wc9w0jIzm+B8L+sZ7h40M5vgfC/rGb7SMjOboCrdgpC9L2vqkZM73KLOc9IyM5ug3C34bB1PWpIWStoqqU/SihrbJenKtH2TpFPr1ZU0VdJtkral72Ortl2Wym+V9Maq9adJuidtu1Lp9cVmZuNpz74DrHvgAHv2HWDJ6cdz2aKT3C1YpaNJS9Ik4GpgETAfOFfS/GHFFgHz0mc5cE2OuiuA9RExD1iffpO2LwVOBhYCn0/7Ie13edWxFrY7XjOzem7c+DBrtz7JjRsffnqIu7sFn9HpgRhnAH0RsR1A0g3AYmBLVZnFwPUREcAGSVMkzQTmjFJ3MdCd6q8BeoH3pfU3RMR+4AFJfcAZkvqBYyLiB2lf1wPnALeM1vgnnniC6667roXwJ7aBgQH6+/s73Ywx8fOf/5yDBw/6/BVUGWPbd1D8aO9vceJR+3n10U9xcNtjXPfAv3e6WRNOp5PWLKC6s3YHsCBHmVl16s6IiJ0AEbFT0vSqfW2osa8n0/Lw9c8iaTnZFRnPf/7zGRgYGCW8YhsaGiptfAcPHiQiShsflPv8lSm2Xz11GJt/dQxPPiV+uO8ofvXrX3HKb+3mycFJlCPC9up00qp13yhylslTN+/xcu8rIlYDqwG6urrikksuqXPI4urt7aW7u7vTzRgT1113HQMDA/j8FVMZYtuz7wA3bnyYODDE7eu38e6zTuC/TD6cJae/nk13fr/w8Y3m0ksvbbpupwdi7ACq7zDOBh7JWWa0urtSFyLp+9Ec+5pdpx1mZi2pntmiMjIQgssWncSyV871/ascOn2ldScwT9Jc4GdkgyT+ZFiZHuDidM9qAbA3dfn9YpS6PcAyYGX6vrlq/VckfRp4AdmAizsiYkjS45LOBH4InAd8bkwiNrPSqySl182fwbe37Hr6+4kDQ3x2/TbgNx8YdqLKr6NXWhFxELgYuBW4F1gbEZslXSjpwlRsHbAd6AO+CLxrtLqpzkrg9ZK2Aa9Pv0nb15IN1vgmcFFEDKU67wS+lI5zP3UGYZjBM/9yvv8XgzW/9+w7MG5lhpdd98CBcT/meMVZGRI+Uf/8K1dRl399y298V66qKonKV1aN6/SVFhGxjiwxVa9bVbUcwEV566b1u4GzRqhzBXBFjfUbgZc20va9++PpCSxr/atq+HflX1ajlW1XmXbsb90DBzj+5MFxPeZ4xfnL/Yfx431TuP8Xgy3tp/Iv5w3bd/Odrb941nfFx2+5b8zLDC+7duuT/IIt43rM8YvzSV6SHrgdj2M2+mdR+W/kdfNncOaLdz397auq1nU8aRXZf+6Pp59Un5h/sVvd3zP/0xu/Y45PnPOOPIpt+47g8q9vaWk/7z7rBC5bdNKz/udU/T+pirEuM7zs/dvv5x1vmj+uxxyvOKfx/XE9ZqN/FtWvEHnJa476jW9rjbILGWvG8+ecGFs2/wQozxVI9bYvfP37vONNryznldZ93+PHjz3FR5a/raX9TOR/OZdhhN1IyhwblD8+SXdFxOlN1XXSal5XV1ds3bq1080YM2X+i+Mh78VW5tig/PG1krQ6PeTdzMwsNyctMzMrDCctMzMrDCctMzMrDCctMzMrDCctMzMrDCctMzMrDD+n1QJJjwPlfVALjgMe63QjxpDjK64yxwblj68rIo5upqKncWrN1mYfkCsCSRsdX3GVOb4yxwaHRnzN1nX3oJmZFYaTlpmZFYaTVmtWd7oBY8zxFVuZ4ytzbOD4RuSBGGZmVhi+0jIzs8Jw0jIzs8Jw0mqApCWSNkt6StKIw4S/WQMAAAZySURBVFElLZS0VVKfpBXj2cZWSJoq6TZJ29L3sSOU65d0j6QftTJ0dbzUOx/KXJm2b5J0aifa2YwcsXVL2pvO1Y8kfbAT7WyWpGslPSrpJyNsL/K5qxdb0c/d8ZK+I+ne9P/Nd9co0/j5iwh/cn6A3wW6gF7g9BHKTALuB14MTAZ+DMzvdNtzxvc3wIq0vAL4xAjl+oHjOt3enDHVPR/A2cAtgIAzgR92ut1tjK0b+Hqn29pCjH8EnAr8ZITthTx3OWMr+rmbCZyalo8GftqOv3u+0mpARNwbEfVmwDgD6IuI7RFxALgBWDz2rWuLxcCatLwGOKeDbWmXPOdjMXB9ZDYAUyTNHO+GNqHI/63lEhH/BuwZpUhRz12e2AotInZGxN1p+XHgXmDWsGINnz8nrfabBTxc9XsHzz5RE9WMiNgJ2X9wwPQRygXwLUl3SVo+bq1rTp7zUdRzlrfdr5D0Y0m3SDp5fJo2bop67vIqxbmTNAc4BfjhsE0Nnz9P4zSMpG8Dz6+x6f0RcXOeXdRYN2GeKxgtvgZ286qIeETSdOA2SfelfzVORHnOx4Q+Z6PI0+67gRdFxKCks4F/BuaNecvGT1HPXR6lOHeSjgK+BlwSEb8cvrlGlVHPn5PWMBHxuhZ3sQM4vur3bOCRFvfZNqPFJ2mXpJkRsTNdoj86wj4eSd+PSrqJrJtqoiatPOdjQp+zUdRtd/X/JCJinaTPSzouIsoyGWtRz11dZTh3kp5DlrC+HBH/VKNIw+fP3YPtdycwT9JcSZOBpUBPh9uUVw+wLC0vA551ZSnpSElHV5aBNwA1Rz9NEHnORw9wXhrJdCawt9JNOsHVjU3S8yUpLZ9B9nd+97i3dOwU9dzVVfRzl9r+d8C9EfHpEYo1fP58pdUASX8MfA6YBnxD0o8i4o2SXgB8KSLOjoiDki4GbiUb3XVtRGzuYLMbsRJYK+kC4CFgCUB1fMAM4Kb0d+lw4CsR8c0Otbeukc6HpAvT9lXAOrJRTH3AE8D5nWpvI3LG9jbgnZIOAr8ClkYatlUEkr5KNoruOEk7gA8Bz4FinzvIFVuhzx3wKuDPgHsk/Sit+9/AC6H58+dpnMzMrDDcPWhmZoXhpGVmZoXhpGVmZoXhpGVmZoXhpGVmZoXhpGXWAknvTzNYb0ozcS/odJtaIWmOpB2SDhu2/kfpWaHqdR+W9DNJH61XT9Klkh6SdNV4xGHl5ee0zJok6RXAm8hmst4v6Tiy2dYLKyL6JT0M/CHwXQBJJwFHR8QdNar8bUR8MpUbrd4dkv4TGPGVPmZ5+ErLrHkzgcciYj9ARDxWmeJK2TvHPiHpjvQ5Ia1/s6QfSvoPSd+WNCOt/7Cy9yv1Stou6X+m9XOUvY/oi+mK7luSfjtt61V6r5uk4yT1p+U/l/RPkr6p7N1of1NpsKQLJP001f3iCFc+XyWbXaNiaVpXT7P1zHJz0jJr3reA41MS+Lyk1wzb/suIOAO4CvhMWnc7cGZEnEL2KpG/rip/EvBGsrkcP5TmbYNsktSrI+JkYAB4a462vRx4O/B7wNuVvZDvBcAHyN5b9Pp0vFrWAudIqvTEvD21tZ5m65nl5u5Bsyal2bdPI+sSey3wfyWtiIjrUpGvVn3/bVqencrNJOtKfKBql99IV237JT1KNmUWwAMRUZkG5y5gTo7mrY+IvQCStgAvAo4DvhsRe9L6G4ETa8T1c0mbgbMk7QKejIi680s2W8+sEU5aZi2IiCGyN1n3SrqHbKLh6yqbq4um788Bn46IHkndwIeryuyvWh7imb+fw9f/dlo+yDO9Jb81rGm19lXrNRAjqXT17aKxLr5m65nl4u5BsyZJ6pJU/X6jlwMPVv1+e9X3D9Lyc4GfpeVltKYfOC0tvy1H+TuA10g6NnXhjdbN+DWyiUwb7eJrtp5ZLr7SMmveUcDnJE0hu+rpA6rf5HyEpB+S/ePw3LTuw8CNkn4GbADmtnD8T5LNyv9nwL/WKxwRP5P0f8jeHvsIsAXYO0LZAUkbyN5m/UCtMu2sZ5aXZ3k3GwNpJN/pE+2FfZKOSvfiDgduInudyU1N7uvDwGBlyHuO8n9O9mdycTPHMwN3D5odaj6c3m30E7JBIP/cwr4GgeWSPlqvoKRLgcuA4a9bN2uIr7TMzKwwfKVlZmaF4aRlZmaF4aRlZmaF4aRlZmaF4aRlZmaF8f8BHerZZBfirVEAAAAASUVORK5CYII=\n" + ], + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": [ + "iVBORw0KGgoAAAANSUhEUgAAAbAAAAEGCAYAAAAE3cBCAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3de5xdZX3v8c+XQJSESy4OAZJIYgiDoVXEkCBwTChQgYOG2nLzWFIPPaDFFtBzLLxsK3qk0lZtxTtQS/ACTbyRoyBIzGgRAwTEIIFILgMJhGTIOJBMIJMMv/PHXntYs9l7Zs+efVk7832/XvPae6/1PGv/9hD2b55n/dazFBGYmZk1m30aHYCZmVklnMDMzKwpOYGZmVlTcgIzM7Om5ARmZmZNad9GB7C3GzduXBx55JGNDqPPtm3b6O3t5ZBDDml0KP10d3czduzYRofRj2MqXxbjckzlyWJMDz300PMR0TJYOyewGps0aRIrV65sdBh9br75Zrq6urjiiisaHUo/bW1tzJ8/v9Fh9OOYypfFuBxTebIYk6SnymnnKUQzM2tKTZHAJJ0haY2ktZKuKrJfkq5P9q+SdNxgfSVNkPRTSU8mj+NT+65O2q+R9K5k2xhJP5b0hKTHJF1X689tZmalZT6BSRoFfBk4E5gFXChpVkGzM4GZyc8lwFfL6HsVsCwiZgLLktck+y8AjgHOAL6SHAfgsxFxNPA24CRJZ1b/E5uZWTkyn8CAOcDaiFgfET3AbcCCgjYLgFsiZwUwTtJhg/RdACxKni8Czkltvy0idkXEBmAtMCcidkbEcoDkWA8DU2rxgc3MbHDNUMQxGdiYer0JmFtGm8mD9J0UEZsBImKzpHxZ3mRgRZFj9ZE0Dng38IViAUu6hNxIkJaWFtra2kp/ujrr6uqit7c3UzEB7NixwzGVIYsxQTbjckzlyWJM5WqGBKYi2wpXIC7Vppy+Q3o/SfsCtwLXR8T6YgeIiBuAGwBaW1sjSxU+7e3tdHV1Za7qKIuVUI6pfFmMyzGVJ4sxlasZphA3AVNTr6cAz5bZZqC+W5JpRpLHrWW+3w3AkxHxb0P+JGZmVjXNkMAeBGZKmi5pNLkCi6UFbZYCFyXViCcALyTTgwP1XQosTJ4vBG5Pbb9A0uskTSdXGPIAgKRPAwcD2bqIysxsL9HZ3cOoAyZMKqdt5qcQI2KPpA8DdwGjgG9ExGOSPpjs/xpwB3AWuYKLncAHBuqbHPo6YLGki4GngXOTPo9JWgysBvYAl0VEr6QpwMeBJ4CHJQF8KSJuqvkvwcxshFiyciOjDphQVoFc5hMYQETcQS5Jpbd9LfU8gMvK7Zts3wacWqLPtcC1Bds2Ufz8mJmZVcm5s6dy2Y7OTeW0bYYpRDMzs9dwAjMzs8wYyhSiE5iZmWXGubOn0uspRDMzayad3T0sWbmR3p0vbCunvROYmZllwpKVG/nMnU8waszBE8tp3xRViGZmtvc7d3ZuDYkP/otHYGZm1gQ6u3v4+s/XAXDpvBnwSu+ecvp5BGZmZg3T2d3DRxc/wvI1HUCSwMrkEZiZmTXMkpUbWb6mg5NmTGRnTy+d3T1l9/UIzMzMGiZ/3mtnTy9fWPYkY0aPGqTHq5zAzMysIfJl8/kkNmb0KM6dPZUPltnfCczMzBpi0X3tfGHZk+zs6eXK048a0vkv8DkwMzNrgM7uHla2dyavBrvPcHFOYGZmVndLVm7kl+u2cUprCwtPnF7RMTyFaGZmddXZ3cPOnj1cfupMFp44jQljR1d0HI/AzMysrpas3MgXlq1lzOhRFScv8AjMzMzqLF91mH+slEdgZmZWN+nS+eGMvsAJzMzM6ii/4vySlRuHfSxPIZqZWd1Ua/oQPAIzM7M6qeb0ITiBmZlZnVRz+hA8hWhmZnVSzelD8AjMzMzqoNrTh+AEZmZmdbDovnY+c+cTLLqvvWrHdAIzM7M6iILH4fM5MDMzq7mFJ05nzOh9q3b+CzwCMzOzGqvF+S9wAjMzsxqrdvl8nqcQzcyspqpdPp/nBGZmZjU1YexoLp03o+rH9RSimZnVTGd3D1//+To6u3uqfmyPwMzMrCY6u3v46OJHWL6mA6DqozCPwMzMrOrSyeuU1paqn/8CJzAzM6uBJSs39iWvz513bFXL5/M8hWhmZlWXrjysRfICj8DMzKzKanXhciEnMDMzq6paXbhcyFOIZmZWVbW6cLlQU4zAJJ0haY2ktZKuKrJfkq5P9q+SdNxgfSVNkPRTSU8mj+NT+65O2q+R9K7U9mslbZS0o5af18zMBpf5BCZpFPBl4ExgFnChpFkFzc4EZiY/lwBfLaPvVcCyiJgJLEtek+y/ADgGOAP4SnIcgP8HzKnBxzQz22vUawox8wmMXMJYGxHrI6IHuA1YUNBmAXBL5KwAxkk6bJC+C4BFyfNFwDmp7bdFxK6I2ACsTY5DRKyIiM21+ZhmZs2vs7uHnT17uPzUmTWfQmyGc2CTgXQa3wTMLaPN5EH6Tsono4jYLOmQ1LFWFDlW2SRdQm4kSEtLC21tbUPpXlNdXV309vZmKiaAHTt2OKYyZDEmyGZcjqk81Y7pjg09LF6zm/Na92PVg89W7bjFNEMCU5Fthbf0LNWmnL6VvN+AIuIG4AaA1tbWmD9//lC611R7eztdXV1kKSaAtrY2x1SGLMYE2YzLMZWn2jG95fgeZtShhB6aYwpxE5Aeh04BCtN6qTYD9d2STDOSPG4dwvuZmVmBel3/ldcMCexBYKak6ZJGkyuwWFrQZilwUVKNeALwQjI9OFDfpcDC5PlC4PbU9gskvU7SdHKFIQ/U6sOZme0t6lW8kZf5KcSI2CPpw8BdwCjgGxHxmKQPJvu/BtwBnEWu4GIn8IGB+iaHvg5YLOli4Gng3KTPY5IWA6uBPcBlEdELIOmfgfcBYyRtAm6KiGtq/TswM2sG9br+Ky/zCQwgIu4gl6TS276Weh7AZeX2TbZvA04t0eda4Noi2z8GfGwosZuZjQT1nj6E5phCNDOzjKv39CE4gZmZ2TDV89qvNCcwMzMbliUrN/KFZWsZM3pU3aYPoUnOgZmZWXbVu3gjr+wEJmlCGc1eiYiuYcRjZmZNpBHFG3lDGYE9m/wUW6kibxTwxmFFZGZmTSNfvAFw6bwZdX3voSSwxyPibQM1kPTrYcZjZmZNpFHThzC0Io53FG6Q1DtYGzMzs1ooO4FFxMtFNquMNmZmtpdqxPVfecOuQpT0PuBwcquvnxgRPxl2VGZm1hSaZQqxlBnk7oD8EXJ3MDYzsxGgkRWIUJ0EtjIiuoFPAs9X4XhmZtYEGjl9CMNPYBERd+afAD+QdKakKcMPzczMsqpRy0elDSmBJffIOn6AJp8ADgQukbRoWJGZmVlmNWr5qLRBizgkXQm8BRgHzAK+Re5GkcXcExGLgcVVi9DMzDIlC6MvKG8ENpdcYvoT4GcR8X8HaHuipO9LulHSR6oTopmZZUkWRl9QxggsIi6Q9B5J3wTGDtL8txHxWUn7AsdUJUIzM8uMrIy+oMxzYBGxFPhL4GFJNw7Q9GxJfw28KSJ+U40AzcwsO7Iy+oIhXMgcEbuAT0saKOWeD7wNeK+kGRHxv4YboJmZZUcjL1wuNOSVOCJioIL/cyPiS8BPJI2vPCwzM8uaRl+4XKjad2Q+IvX8qiof28zMGqjRFy4XqvYdmfeR9N+AXwITq3xsMzNroCxNH8LwR2CFN7f8GPBW4Ebg9mEe28zMMmTC2NFcOm9GJqYPYZgjsIjYp+B1L/ClYUVkZmaZ1LTnwCQ9XI02ZmbWfDq7e/jo4kea9hzYmyWtGmC/gIOHGY+ZmWXQkpUbWb6mg1NaWzJzDmwoCezoMtr0VhqImZllT2d3D4vu28BLPa9w+akzWXjitExMH8LQLmR+qpaBmJlZtuSnDZev6QDg6jOPzkzyguqX0ZuZ2V4iP2140oyJzJ42ITNTh3lOYGZm9hrpRXuzNG2YVu2VOMzMbC+QpUV7SxlKGf29yeN2SS8W/LwgaYOkv6pdqGZmVg9ZumXKQMpOYBFxcvJ4YEQcVPBzMDAbuLxWgZqZWX00w+gLqngOLCK2SZpfreOZmVljnDZrEivWb+O0WZMaHcqAqnoOLCI2V/N4ZmZWf/es3sLyNR3cs3pLo0MZkIs4zMysT7Oc/4IKEphy3i/pH5LXb5Q0p/qhmZlZPeUvXG6G819Q2QjsK8A7gAuT19uBL1ctIjMzq7v0qhtZWu9wIJUksLkRcRnwMkBE/B6oaZqWdIakNZLWSnrNnZ6TUeH1yf5Vko4brK+kCZJ+KunJ5HF8at/VSfs1kt6V2v52SY8m+66XVHg/NDOzplOYvD533rGZH31BZQlst6RRQABIagFeqWpUKcl7fRk4E5gFXChpVkGzM4GZyc8lwFfL6HsVsCwiZgLLktck+y8AjgHOAL6SHIfkuJek3uuMan9eM7N6S6803yzJCyoro78e+AFwiKRrgT8D/r6qUfU3B1gbEesBJN0GLABWp9osAG6JiABWSBon6TBg2gB9FwDzk/6LgDbgb5Ptt0XELmCDpLXAHEntwEER8avkWLcA5wB3DhT8zp07ufnmm4fx8avrueeeY8+ePZmKCaCrq4v29vZGh9GPYypfFuNyTOXZ3PkiT/RuYd5EMbv3eZYuWT14p4wYcgKLiG9Legg4ldw9wM6JiMerHtmrJgPpu6dtAuaW0WbyIH0n5cv+I2KzpENSx1pR5Fi7k+eF219D0iXkRmoceuihdHV1DfDx6mvPnj1ERKZiAujt7XVMZchiTJDNuBxTeX69YxwP7DyAuWO3sXvH78lWdAMbcgKT9E8R8bfAE0W21UKx80xRZpty+pb7fmUfKyJuAG4AaG1tjSuuuGKQt6yfm2++ma6uLrIUE0BbWxvz589vdBj9OKbyZTEux1SeDTfeBev2cMIJc7ni9NZGhwPAlVdeWVa7Ss6BnV5k25kVHKdcm4B0OcwU4Nky2wzUd0syzUjyuLWMY00ZJA4zs6bR2d0DkKw4P73B0QzdUBbz/ZCkR4HWpNIv/7MBWFW7EHkQmClpuqTR5Aoslha0WQpclFQjngC8kEwPDtR3KbAweb4QuD21/QJJr5M0nVyxxgPJ8bZLOiGpPrwo1cfMrKnkKw9vX7enKa75KmYoU4jfIVew8BmSir3E9ojorGpUKRGxR9KHgbuAUcA3IuIxSR9M9n8NuAM4C1gL7AQ+MFDf5NDXAYslXQw8DZyb9HlM0mJyhR57gMsiojfp8yHgZmB/cr+LAQs4zMyyKF02/5aWfZrimq9iyk5gEfEC8AKvXsBcNxFxB7kkld72tdTzAC4rt2+yfRu5QpRifa4Fri2yfSXwB0OJ3cwsa9Jl8++d3N2Uoy+orIjjdcCfkitR7+sfEZ+qXlhmZlYLhXdaXvXgfY0OqWKVFHHcTu5aqT1Ad+rHzMwyrNnWOhxMJRcyT4kIr0BhZtZk0lOHzXreK62SEdh9kv6w6pGYmVlNnTZrEqe0tvB3Z89q+tEXDGEElpTQR9LnA5LWA7vIXeAbEfGW2oRoZmbD1dndw6d/tJrlazo44U1bmDHvgEaHNGxDmUI8u2ZRmJlZTe1t04cwhCnEiHgqIp4CPkXuQuH86xeBT9QqQDMzG5505WEzrTY/mErOgb0lIvrWe0zuB/a26oVkZmbVsrdVHqZVksD2Kbj54wQqq2Y0M7Ma2xunDvMqSTyfI1eJ+F1yRR3nUWTVCjMza6zCi5b3ptEXVDACi4hbyN3EcgvQAbw3Ir5Z7cDMzGx4lqzcuFdOHeZVNPWXLIj72KANzcysYfJThnvb1GHeUK4DuzciTpa0nf43csxfB3ZQ1aMzM7OKdHb3sGTlRs6dPXWvHH3B0FajPzl5PLB24ZiZWTUsWbmRz9z5BACXzpvR4GhqYygjsI8MtD8iPj/8cMzMrBr29ulDGNo5sPzIqxU4nlfvbPxu4BfVDMrMzGwwQ5lC/CSApLuB4yJie/L6GmBJTaIzM7OKjIQpxEouZH4j0JN63UPu5pZmZpYB6eu/9uYpxEoS2DeBByRdI+kTwP3AouqGZWZmldrbr//KG/J1YBFxraSfACcnmz4QEb+ublhmZlaJkTL6gsovZH4IeKjKsZiZ2TDlR19Xn3n0Xj36ggoSmKTZwMeBI5L+vqGlmVkGjKTRF1Q2Avs28H+AR4FXqhuOmZlVaiSNvqCyBNYREUsHb2ZmZvUy0kZfUFkC+4Skm4BlwK78xoj4ftWiMjOzsuVvWrl8TceIGX1BZQnsA8DRwH68OoUYgBOYmVkD7M03rRxIJQnsrRHxh1WPxMzMKnLarEmsWL+Nvzt71ogZfUFlFzKvkDSr6pGYmVlF7lm9heVrOrhn9ZZGh1JXlYzATgYWStpA7hyYy+jNzBpkJBZv5FWSwM6oehRmZlaRkVY6nzbkKcSIeAoYR+42Ku8GxiXbzMysjkby6AsqSGCSLid3MfMhyc+3JP11tQMzM7OBjZRFe0upZArxYmBuRHQDSPon4FfAF6sZmJmZlTbSR19QWRWigN7U695km5mZ1UH+wuWRPPqCykZg/wHcL+kHyetzgH+vXkhmZlZKetWNkXbhcqEhJTBJApYAbeTK6YXvB2ZmVjfpVTc+d96xI3b0BUNMYBERkn4YEW8HHq5RTGZmVsJIXXWjmEpX4ji+6pGYmdmgRuqqG8VUcg7sFOBSSU8B3XglDjOzunDlYX+VjMDOBGYAf0TuQuazk8eqkzRB0k8lPZk8ji/R7gxJayStlXRVOf0lXZ20XyPpXantb5f0aLLv+uS8H5LeKelhSXsk/VktPq+ZWSmuPHytShLYX0XEU+kf4K+qHVjiKmBZRMwkd/+xqwobSBoFfJlcYp0FXJhabLho/2T/BcAx5JbG+kpyHICvApcAM5Of/NJZTwN/AXynuh/RzGxwI/WWKQOpJIGdXmTbmcMNpIQFwKLk+SJyJfuF5gBrI2J9RPQAtyX9Buq/ALgtInZFxAZgLTBH0mHAQRHxq4gI4JZ8n4hoj4hVvHoPNDOzukhPHY70ysO0ss+BSfoQuZHWmyStym8GDgB+WYPYACZFxGaAiNgs6ZAibSYDG1OvNwFzB+k/GVhR0GcysDt5Xrh9SCRdQm4UR0tLC21tbUM9RM10dXXR29ubqZgAduzY4ZjKkMWYIJtx7U0x3bGhh8VrdnNe636sevDZTMSUBUMp4vgOcCfwGfpP5W2PiM5KA5B0D3BokV0fL/cQRbZFhX0qOdZrO0TcANwA0NraGvPnzx/qIWqmvb2drq4ushQTQFtbm2MqQxZjgmzGtbfE1Nndw693b+DyKWLhidOqPvrK4u+pXENJYEcBGyPiQgBJFwF/Cjwl6ZpKk1hEnFZqn6Qtkg5LRk+HAVuLNNsEpCeEpwD5P1FK9S/VZ1PyvNixzMzqKr3qxki8XcpghnIO7OtAD+Qq8oDryJ0jeoFktFEDS4GFyfOFwO1F2jwIzJQ0XdJocsUZSwfpvxS4QNLrJE0nV6zxQDLduF3SCUn14UUl3tPMrOZcuDGwoSSwUalR1vnADRHxvYj4e+DI6ocG5JLk6ZKeJFc8ch2ApMMl3QEQEXuADwN3AY8DiyPisYH6J/sXA6uBnwCXRUR+geIPATeRK+xYR27aFEnHS9oEnAt8XVL+PczMauK0WZM4pbXFq26UMJQpxFGS9k0SxqkkRQoVHKdsEbEtea/C7c8CZ6Ve3wHcUW7/ZN+1wLVFtq8E/qDI9gfpP71oZlZT+VU3TnjTFmbMO6DR4WTOUBLPrcDPJT0PvAT8F4CkI8lNI5qZWZV41Y3BlT2FmIxYPgrcDJycXCeVP4bvyGxmVkUj/W7L5RjqavQrimz7XfXCMTMb2Tq7e1h03wZe6nnFo69B1OTclZmZDV26bB5w6fwgnMDMzDIiXzZ/0oyJzJ42waOvQTiBmZllQLpooxYrbuyNKlnM18zMqmzRfe18YdlaACevMjmBmZk1WGd3Dyvb8+tEDHn51RHLCczMrIHyhRu/XLeNU1pbWHji9EaH1DScwMzMGiRddXhKa4vv9TVETmBmZg3g5DV8TmBmZnXm5FUdTmBmZnXk5FU9TmBmZnW06L52lq/p4OQj3+DkNUy+kNnMrE629wQrn8qVy7/9iHFOXsPkBGZmVged3T3c+OjLrOrY6XL5KvEUoplZjeXPe63qeMXnvarIIzAzsxrJ3xrloae6uHft87ylZR8nrypyAjMzq5H0+oantLbw3sndTl5V5ClEM7MaSK9vePKRE/ncecdy4Gg1OKq9ixOYmVmVFa5veP2Fx3nkVQNOYGZmVeQLlevHCczMrEqcvOrLCczMrAqcvOrPCczMrAq8RFT9uYzezKxC+eu8Xup5hd9s6gK8RFQ9OYGZmQ1R4QXKeV4iqr6cwMzMhmjJyo19FyifNGMixxx+MPuPHsXCE6d59FVHTmBmZmXKj7x+372budMn8Nap4/jgvBlOWg3iBGZmNohSU4Z/dPQhTl4N5ARmZlZCZ3cPX2tby92rt9C+bSfQf8rw3NlTGxzhyOYEZmZWRPq6LoBpE8ew4NjJPs+VIU5gZmYphdOFc6aNZ/S+o/jkgmOY0XJAo8OzFCcwM7PEuo4dXHLLStZ1dAN4RY2McwIzMyM38sonL08XNgcnMDMbcfLFGas3b+cjpx/Fz3+3lYee6mJdRzczWsZyw0WzPV3YBJzAzGyvl17yCWD15hf7yuFXb36Bzu7dgKcMm40TmJntNdZ17OAffvhbZhxyAFs37+K+7sd5eXcvv3iyo68MPm/OtPFs3b6L9m07OWnGRGZPm+ApwyaT6QQmaQLwn8A0oB04LyJ+X6TdGcAXgFHATRFx3WD9JV0NXAz0An8TEXcl298O3AzsD9wBXB4RIekjwF8Ce4AO4H9GxFM1+NhmVqFP/2g1v1y3jV+u25bb0L6+b9+0iWP441mHAvQt+wS5ZaHOnT3ViasJZTqBAVcByyLiOklXJa//Nt1A0ijgy8DpwCbgQUlLI2J1qf6SZgEXAMcAhwP3SDoqInqBrwKXACvIJbAzgDuBXwOzI2KnpA8B/wycX+PPb2ZlyE8RTh0/hrnTJ9B66IFs3fwMb5z6Rl7e3cv657tLlsFfOm9GAyK2ash6AlsAzE+eLwLaKEhgwBxgbUSsB5B0W9Jv9QD9FwC3RcQuYIOktcAcSe3AQRHxq+RYtwDnAHdGxPLUe64A3l+lz2hmFUif10qf07r6zKO5dN4M2tqeZ/78Nzc4SqulrCewSRGxGSAiNks6pEibycDG1OtNwNxB+k8ml4TSfSYDu5PnhdsLXUxuVGZmdZA+t/X6fUcB8JtNXdy/obOvTf48lpd3GjkansAk3QMcWmTXx8s9RJFtUWGfQY8l6f3AbGBeyYNLl5CbhqSlpYW2trZBwqmfrq4uent7MxUTwI4dOxxTGbIYE1Qnru09wT1P9bCr97X7Ht7Sy9aX4tVzWylHjRNvnrgvpx3xEgfu9yyrHny2ajFVm2OqroYnsIg4rdQ+SVskHZaMng4DthZptglI/8k1BXg2eV6qf6k+m5LnxY6FpNPIJdZ5yfRjqc90A3ADQGtra8yfP79U07prb2+nq6uLLMUE0NbW5pjKkMWYYPC48tdd/WbTC7QeemDfKOrl3b2s2bKd1kMPZH1HN/eu21nyGNMmjuGdR7X09QUGvAdXFn9Xjqm6Gp7ABrEUWAhclzzeXqTNg8BMSdOBZ8gVZ7xvkP5Lge9I+jy5Io6ZwAMR0Stpu6QTgPuBi4AvAkh6G/B14IyIKJZIzUac/NTe63te5r7ux4H+SSmfbNLnqNLTfnn5bSfNmMieV4L7N3Qyd/p43jplPDBworKRK+sJ7DpgsaSLgaeBcwEkHU6uXP6siNgj6cPAXeTK6L8REY8N1D8iHpO0mFyhxx7gsqQCEeBDvFpGfyevnuv6F+AAYIkkgKcj4j01++RmGVJqBHX36uf6rq9atnF9vz6FiWrOtPFIKjkCGz9mtEvbbUgyncAiYhtwapHtzwJnpV7fQa7kvaz+yb5rgWuLbF8J/EGR7SWnOs2yqrO7py8ZACWfp1epgNeOogYaQU2bOIYZY3YxY9oRRfvC0EdQLm23cmQ6gZlZf5t3vML/uHFFv2o8KJ400itQ/OJ3HUji3rXPc+sDTzPpoNdz/4ZOfvG7jr4pu2LS24uNoPKJadWD97lk3erOCcyaSnpEkeXppfw1Sr/v3t0vsew/ehTvOfZwlj7yzIAjnlLbfvjQy2x96aWi1XhQ/PzShLH79bWfMHY/2rftpH3bTma0jO13nLnTJ/DWKeOKvrfPQVkWOYGNIJ3dPSzv2J/tL40ifvo73nPs4dyzegvHT5vA5+5ew4xDDug7DzGcL6r0BaZD+eIrXHC1WN8lKzfymTufAIpPM+UT3GmzJnHP6i39pshART9zqYTx9MZd/Kzrt2UloML+6zu6+6bcoH9i+eGvn+GpzuLVdgMVOOQVq8YrlQDXP9/dt9o6iHlHtfC5u9dwzOSDOf/4qX2fwwnKmpEiBrtkyoajtbU11qxZU5NjF/srf/yY0X1f0qfNmtTvi7bwws8ZLWNZ19HNhLH79a3GDblKsBktB/T78nup55WyRwnFLjAtPF76yzS38Ooz7Nh3XL8v/XzfYw4/eMjvPW3imL5FWtNTZKU+81DkjzGY/OcudS4pXWVX7ufb8uxGPvG++ZlLNFksxXZM5cliTJIeiojZg7XzCKzGnut+hX+4/bcl/1pOj3jSo4eljzzzmumnwr6l/sr/0apnWdfRzdd/sa7ol/Th+3bzpmlHcO/a5/u+jPN/1eePmZ9aSt9qovB9Bts2d/oE9hu1T8njfXNFO53du1PTWM/3SzjTJo7pvzBr8j6ntLawfE3HgO9dbIps2sQxffd7Sn/m0iOwpznk0MlFE1A+QZZKQqVGsvk/OkAVjXja2rZkLnmZNYoTWI293Au3/Kr4ovX5L96V7Z3MaDmg74T74pUb+/2FP9h1M+m/8vMJKD/CSK/ADbBm9aMcPeo5Lr3wnNdMteWTaH5Ul49nqKMg6L/ad7Hj5QsK8klk6+ZnaJ0xvV8ZdXoEmX+ft04dx/nHT6JkMskAAAh3SURBVOUtU4on+PT7p6f68q/zI9P0Zy6lrW0L8+f3L0gtNkU5lIQyYexorjy9tez2ZlaaE1iNvX4UXPSOI0qOwApHPBPG7se6ju6i00+FfYv9lZ//gj1+2gS++LMn+buzZ/Vbgfvmjvvp6nqFCWNH951DmjHv1f3pL9hqFUwUOx70v9Ynt/DqUX198rGV+rIvNwkUtst/1vRnHopSvzczqz8nsBo7dOw+fGrBay4r65Me8eTPET3Y3llx0kh/wf7HB+ZUHHfhsaqh8Hi+1sfMhsMJrMGKTSkdd8T4BkVjZtY89ml0AGZmZpVwAjMzs6bkBGZmZk3JCczMzJqSE5iZmTUlJzAzM2tKTmBmZtaUvJhvjUnaDtRmNd/KvQF4ftBW9eWYypPFmCCbcTmm8mQxptaIOHCwRr6QufbWlLOqcj1JWumYBueYypfFuBxTebIaUzntPIVoZmZNyQnMzMyakhNY7d3Q6ACKcEzlcUzly2Jcjqk8TRuTizjMzKwpeQRmZmZNyQnMzMyakhNYjUk6V9Jjkl6R1NBSVUlnSFojaa2kqxoZS56kb0jaKum3jY4lT9JUScslPZ78t7s8AzG9XtIDkn6TxPTJRseUJ2mUpF9L+lGjYwGQ1C7pUUmPlFuOXQ+Sxkn6rqQnkn9b72hwPK3J7yj/86KkKxoZUxLXlcm/8d9KulXS60u29Tmw2pL0ZuAV4OvA/46IhvwPJWkU8DvgdGAT8CBwYUSsbkQ8qbjeCewAbomI0reuriNJhwGHRcTDkg4EHgLOaeTvSpKAsRGxQ9J+wL3A5RGxolEx5Un6CDAbOCgizs5APO3A7IjI1MW5khYB/xURN0kaDYyJiK5GxwV93w/PAHMj4qkGxjGZ3L/tWRHxkqTFwB0RcXOx9h6B1VhEPB4RWViJYw6wNiLWR0QPcBuwoMExERG/ADobHUdaRGyOiIeT59uBx4HJDY4pImJH8nK/5Kfhf31KmgL8d+CmRseSZZIOAt4J/DtARPRkJXklTgXWNTJ5pewL7C9pX2AM8Gyphk5gI8dkYGPq9SYa/KXcDCRNA94G3N/YSPqm6h4BtgI/jYiGxwT8G/AxcrMMWRHA3ZIeknRJo4NJvAnoAP4jmW69SdLYRgeVcgFwa6ODiIhngM8CTwObgRci4u5S7Z3AqkDSPcl8beFPw0c4KSqyreF/wWeZpAOA7wFXRMSLjY4nInoj4lhgCjBHUkOnXCWdDWyNiIcaGUcRJ0XEccCZwGXJNHWj7QscB3w1It4GdANZOQ89GngPsCQDsYwnNzM0HTgcGCvp/aXaey3EKoiI0xodQxk2AVNTr6cwwNB8pEvOM30P+HZEfL/R8aRFRJekNuAMoJHFLycB75F0FvB64CBJ34qIkl849RARzyaPWyX9gNz0+S8aGRO5//82pUbN3yUjCYxcon84IrY0OhDgNGBDRHQASPo+cCLwrWKNPQIbOR4EZkqanvzFdQGwtMExZVJSMPHvwOMR8flGxwMgqUXSuOT5/uT+R3+ikTFFxNURMSUippH79/SzRicvSWOTwhuSKbo/prFJHoCIeA7YKKk12XQq0NACqpQLycD0YeJp4ARJY5L/D08ldw66KCewGpP0J5I2Ae8AfizprkbEERF7gA8Dd5H7B7E4Ih5rRCxpkm4FfgW0Stok6eJGx0RuZPHnwB+lSozPanBMhwHLJa0i98fITyMiE2XrGTMJuFfSb4AHgB9HxE8aHFPeXwPfTv4bHgv8Y4PjQdIYcpXJmZhlSEao3wUeBh4ll6NKLivlMnozM2tKHoGZmVlTcgIzM7Om5ARmZmZNyQnMzMyakhOYmZk1JScwsxqT9PFkde1VSUn+3EbHNBySpiWXPOxTsP0RSXMKtl0j6RlJnxqsX7IK+dOSvlSPz2HNzytxmNVQcsuMs4HjImKXpDcAoxsc1rBERLukjcB/A34OIOlo4MCIeKBIl3+NiM8m7Qbq94Ck35Nb2d5sUB6BmdXWYcDzEbELICKezy91lNy36p+Uu8/XA5KOTLa/W9L9yaKv90ialGy/Rrn7p7VJWi/pb5Lt05S7v9SNyUjv7mS1DpK2s5Pnb0huNYKkv5D0fUk/kfSkpH/OByzpYkm/S/reWGJEdCu51Tfyyl0MttJ+Zq/hBGZWW3cDU5OE8BVJ8wr2vxgRc4AvkVvZHXL3QzohWfT1NnKrvecdDbyL3Pp+n0jWbASYCXw5Io4BuoA/LSO2Y4HzgT8EzlfuRp6HA38PnEBuhYajS/RdDJyT3PKC5Di3lfGelfYzew1PIZrVUHIDyreTmzY7BfhPSVelbtB3a+rxX5PnU5J2h5GbbtyQOuSPk9HcLklbyS2dBLkFUB9Jnj8ETCsjvGUR8QKApNXAEcAbgJ9HRGeyfQlwVJHP9Zykx4BTJW0BdkfEoGsOVtrPrBgnMLMai4heoA1ok/QosBC4Ob873TR5/CLw+YhYKmk+cE2qza7U815e/X+4cPv+yfM9vDrTUnhr9mLHKnbbnVLy04FbGNo0YKX9zPrxFKJZDUlqlTQztelYIH3X2/NTj79Knh9M7vbukEt2w9EOvD15/mdltH8AmCdpfDLNN9BU5PeAsxj6NGCl/cz68QjMrLYOAL6Y3AplD7AWSN8l+HWS7if3x+SFybZrgCWSngFWkLu5X6U+CyyW9OfAzwZrHBHPSPpHcnegfpbcLT9eKNG2S9IKYFJEbCjWppr9zAp5NXqzBkkqAmdHxPONjiVN0gHJubt9gR8A34iIH1R4rGuAHfky+jLa/wW538mHK3k/G1k8hWhmha6R9Ai5G0FuAH44jGPtAC6R9KnBGkq6ErgaeHEY72cjiEdgZmbWlDwCMzOzpuQEZmZmTckJzMzMmpITmJmZNSUnMDMza0r/H2bkRNS6YETWAAAAAElFTkSuQmCC\n" + ], + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": [ + "iVBORw0KGgoAAAANSUhEUgAAAbAAAAEGCAYAAAAE3cBCAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3de5ycZX338c+XwCJJOCRhCeQgCUtYDBYjxICCEgpUQimxBxR8taQ+tKmKlkP7VHj0UbRQaR+1ResBtBaoFkw85kGUQ8yigCEECEEWAjksSSCGJcuGZCPZZPPrH3PPMjvM7s7Ozuzcs/t9v177mpl7ruue34Rkf/yu+7qvSxGBmZlZrdmv2gGYmZmVwgnMzMxqkhOYmZnVJCcwMzOrSU5gZmZWk/avdgDD3WGHHRbHHntstcPotm3bNrq6ujjiiCOqHUoPHR0djBkzptph9OCYipfGuBxTcdIY06OPPvpyRNT3184JrMImTpzIypUrqx1Gt1tuuYX29nauuOKKaofSQ1NTE3Pnzq12GD04puKlMS7HVJw0xiTp+WLaeQjRzMxqkhOYmZnVJCcwMzOrSU5gZmZWk5zAzMysJjmBmZlZTXICMzOzmuQEZmZmqdHW0cmoseMnFtPWCczMzFJj8cpNjBo7fkoxbZ3AzMwsNS6cPZWunW2bi2nrBGZmZjXJCczMzFLDQ4hmZlZz2jo62dW5l66O9heLae8EZmZmqbB45SZuXLoWYt++Yto7gZmZWdVlq6/Lz5pB167t24rp4wRmZmZVl62+RteNgn1de4vp4wRmZmZVlVt9XTh7atH9nMDMzKyqcquv8WPqiu7nBGZmZlVTavUFTmBmZlZFpVZf4ARmZmZVMpjqC5zAzMysSgZTfQHsX4GYzMzM+nX2zIksX7+Ns2cWtXvKG7gCMzOzqriveSvL1rRyX/PWkvo7gZmZ2ZAb7PUvcAIzM7MqGOz1L/A1MDMzq4Js1VVq9QWuwMzMbIi1dXSyeOUmLpw9teTqC5zAzMxsiC1euYnP/+wZFq/cNKjzOIGZmdmQKcfkjSwnMDMzGzLlmLyR5QRmZmZDopzVFziBmZnZECln9QVOYGZmNgTKXX2BE5iZmQ2Bcldf4BuZzcxsCAx24d5CXIGZmVnFDXbh3kJqIoFJOlfSGklrJV1d4H1J+nLy/mpJJ/XXV9J4SfdKei55HJfz3jVJ+zWS3lvg85ZI+k0lvquZ2XBTietfUAMJTNIo4KvAPGAmcLGkmXnN5gEzkp+FwNeL6Hs1sDQiZgBLk9ck718EnACcC3wtOU82nj8Bdpb/m5qZDU+VuP4FNZDAgDnA2ohYHxGdwB3A/Lw284HbImM5cJiko/rpOx+4NXl+K/C+nON3RMTuiNgArE3Og6SxwFXAdZX4omZmw02lqi+ojUkck4HcBbM2A6cU0WZyP30nRsQWgIjYIumInHMtL3AugH8Evgjs6itgSQvJVILU19fT1NTUV/Mh1d7eTldXV6piAti5c6djKkIaY4J0xuWYilPJmHZ0Bt988jVWt+7j/Y0HsPqRF8t6/lpIYCpwLIpsU0zfoj5P0izg2Ii4UtK0vk4QETcDNwM0NjbG3Llz+/nIodPS0kJ7eztpigmgqanJMRUhjTFBOuNyTMWpZEw33b+O1a3PcGZjPVe/f1ZZhw+hNhLYZiC37pwC5Kfx3trU9dF3q6SjkurrKOClfs71TuBkSS1k/tyOkNQUEXNL/F5mZsNW7tDhgndNK3vygtq4BvYIMEPSdEl1ZCZYLMlrswS4JJmNeCqwPRke7KvvEmBB8nwB8JOc4xdJOlDSdDITQ1ZExNcjYlJETANOB5518jIzK6xSEzdypb4Ci4i9kj4G3A2MAr4dEU9J+nDy/jeAu4DzyEy42AV8qK++yalvABZJuhTYCFyY9HlK0iKgGdgLXBYRXUPzbc3Mal8lJ27kSn0CA4iIu8gkqdxj38h5HsBlxfZNjm8Dzuqlz/XA9X3E0wK8tYjQzcxGnGz1dc284ytWfUGNJDAzM6sdlVg2qpBauAZmZmY1pBLLRhXiBGZmZmUzVNe/wAnMzMzKpK2jk79btKrisw+znMDMzKwsFq/cxLI1rZzZWF/x6gs8icPMzMpgKG5czucKzMzMBm0oblzO5wRmZmaDMpQTN3I5gZmZ2aBUo/oCJzAzMxuEalVf4ARmZmaDUK3qCzwL0czMBmGolo0qxBWYmZmVpK2jk+vubB6SZaMKcQIzM7OSDPWNy/k8hGhmZgNWjRuX87kCMzOzAavm5I2soiswSeOLaLYvItoHEY+ZmaVcNafO5xrIEOKLyY/6aDMKePOgIjIzs1Qbqh2X+zOQBPZ0RLy9rwaSHh9kPGZmlmJpqb5gYNfA3pl/QFJXf23MzGx4GOr9vvpTdAKLiNcKHFYRbczMbBio9rT5fIOehSjpg5L+XtIhks4tR1BmZpY+Z8+cyJmN9Xzq/JlVr76gPNPoG4CvA1cBTmBmZsPUfc1bq7bqRiHlSGArI6ID+CzwchnOZ2ZmKZOmyRtZg01gERE/yz4BfiRpnqQpgw/NzMzSIG2TN7IGlMAkHSjpHX00+QxwMLBQ0q2DiszMzFIhbZM3svq9D0zSlcCJwGHATOA7wCO9NL8vIhYBi8oWoZmZVU0a1jzsTTEV2ClkEtMfA7+IiH/so+27JP1Q0jclXVWeEM3MrFrSsOZhb/qtwCLiIkkXSPovYEw/zX8TEV+QtD9wQlkiNDOzqkjjxI1cRV0Di4glwF8Bj0n6Zh9Nz5f0ceCYiHiiHAGamVl1pLn6ggGshRgRu4HrJPWVhj8AvB34E0kNEfHXgw3QzMyGXtqrLyhhGn1EbOrj7Qsj4ucRcQPwD6WHZWZm1ZLWafP5yr2h5dE5z68u87nNzGwIpHXafL5yJ7D9JL1b0n7AhDKf28zMhkDa1jzszWATWP7mlv8AvA34JvCTQZ7bzMyGWFtHJ9fd2ZyqNQ97M5ANLd8gIvbLe90F/PugIjIzs6qpleFDGEAFJumxcrQxM7N0yp15+MX3z0r18CEMrAJ7i6TVfbwv4NBBxmNmZlWQnXm4bE0r18w7PvXJCwaWwI4vok1XqYH0Jdko80ZgFPCtZJp+7vtK3j8P2AX8ZUQ81ldfSeOB7wHTgBbg/RHxSvLeNcClyff524i4W9JoYDGZ/c+6gP8fEZ5paWbDQi0NHWYN5Ebm5ysZSG8kjQK+CpwDbAYekbQkIppzms0DZiQ/p5DZYPOUfvpeDSyNiBskXZ28/oSkmcBFZJbCmgTcJ+m45HO+EBHLJNUBSyXNy24nY2ZWq9K8YG9fyj2NvhLmAGsjYn1EdAJ3APPz2swHbouM5cBhko7qp+98ILvly63A+3KO3xERuyNiA7AWmBMRuyJiGUByrscA73tmZjVtR2fUxE3LhQxqFuIQmQzkrv6xmUyV1V+byf30nRgRWwAiYoukI3LOtbzAubpJOgz4IzJDk28gaSGwEKC+vp6mpqbev90Qa29vp6urK1UxAezcudMxFSGNMUE643JMxVm6voNlLbs4sX4/Ju3eSFNTX4stpUstJLD8e80Aosg2xfQd0OclK+3fDnw5ItYXOkFE3AzcDNDY2Bhz587t5yOHTktLC+3t7aQpJoCmpibHVIQ0xgTpjMsxFWfLzl+w/cCxfOr8mTTUj612OAMykGn0DySPOyS9mvezXdIGSR+tQIybgdwrilOAF4ts01ffrckwI8njS0V+3s3AcxHxbwP+JmZmKfN4696auGm5kKITWEScnjweHBGH5P0cCswGLq9AjI8AMyRNTyZPXAQsyWuzBLhEGacC25Phwb76LgEWJM8X8PrKIUuAiyQdKGk6mYkhKwAkXUfmVoErKvA9zcyGVFtHJ7v3RqpXnO9L2SZxRMQ2YG65zpdz3r3Ax4C7gaeBRRHxlKQPS/pw0uwuYD2ZCRffBD7aV9+kzw3AOZKeIzNL8Yakz1PAIqAZ+DlwWUR0SZoCfBKYSWZftFWS/qrc39fMbChk7/v6ybq9NTd5I6us18CykyLKLSLuIpOkco99I+d5AJcV2zc5vg04q5c+1wPX5x3bTOHrY2ZmNSd739eJ9fvVZPUFtTGJw8zMyij3vq9j44WarL6ghCHE5DrTn0v6dPL6zZLmlD80MzMrt/zNKg+uq92BpVKugX0NeCdwcfJ6B5nVLszMLOVqccmo3pQyhHhKRJwk6XGAiHglmeFnZmYpVqtLRvWmlApsT7LGYABIqgf2lTUqMzMru1sfauHGpWsBaj55QWkJ7MvAj4AjJF0PPAB8vqxRmZlZWbV1dLKypS151d+CRLVhwEOIEfFdSY+SmYIu4H0R8XTZIzMzs7LITtx4cN02zmysZ8G7plc7pLIYcAKT9M8R8QngmQLHzMwsZXInbtTCTsvFKmUI8ZwCx+YNNhAzMyu/3Ikbwyl5wcAW8/2IpCeBRkmrc342AKsrF6KZmZVq8cpNNbnXVzEGMoT438DPyEzYuDrn+I6IaCvcxczMqiW3+qr1e74KKTqBRcR2YDuv38BsZmYplZ24sWxNK9fMO37YVV9Q2iSOA4E/Babl9o+Iz5UvLDMzG4xbH2ph2ZpWTj/28GFZfUFpK3H8hEwl9iiwu7zhmJnZYOXe83Xy0YcNy+oLSktgUyLi3LJHYmZmZbF45aZhd89XIaUksIck/V5EPFn2aMzMbFCG23qHfSk6gSVT6CPp8yFJ68kMIYrMnpInViZEMzMrxkiYuJFrIBXY+RWLwszMBm04bZVSjKJvZI6I5yPieeBzwPac168Cn6lUgGZm1r/hvOJGb0pZSurEiGjPvoiIV4C3ly8kMzMbiPxdlkdC8oLSEth+ksZlX0gaT2mTQczMrAxGwj1fhZSSeL5IZibi98lM6ng/cH1ZozIzs6KMlHu+CillP7Dbkv3AziQzA/FPIqK57JGZmVmfhus+X8UqaegvIp4CnipzLGZmNgDDdZ+vYg3kPrAHIuJ0STvouR919j6wQ8oenZmZvUFbRye3PrSB33XuGxE3LPdmIKvRn548Hly5cMzMrC+5NysDI+KG5d4MpAK7qq/3I+JLgw/HzMz6kh02PK1hArOnjR9Rsw7zDeQaWLbyagTeASxJXv8R8MtyBmVmZoWdPXMiy9dv41Pnz6Shfmy1w6mqgQwhfhZA0j3ASRGxI3l9LbC4ItGZmRnw+nWvR59v54G1L3PqMVtpOMMJbKDeDHTmvO4ks7mlmZlVQP51r5Gy1mF/Sklg/wWskPQjMrMR/xi4taxRmZlZt/zrXiN11mG+Um5kvl7Sz4HTk0MfiojHyxuWmZnByNrfa6BKvZH5UeDRMsdiZmY5Rtr+XgM14AQmaTbwSeDopL83tDQzq4CRukhvsUqpwL4L/G/gSWBfecMxMzMY2Yv0FquUBNYaEUv6b2ZmZqUY6Yv0FquUBPYZSd8ClgK7swcj4odli8rMbITKve41UhfpLVYpCexDwPHAAbw+hBiAE5iZWYnyb1R28upfKTsyvy0iZkfEgoj4UPLzv8oeWQ5J50paI2mtpKsLvC9JX07eXy3ppP76Shov6V5JzyWPubtMX5O0XyPpvTnHT5b0ZPLelyWpkt/bzEaOxSs3cePStU5eA1BKAlsuaWbZI+mFpFHAV4F5wEzg4gKfPw+YkfwsBL5eRN+rgaURMYPMcOjVSZ+ZwEXACcC5wNeS85Ccd2HOZ51b7u9rZiNPW0cn23bu5pTp41n4nmOcvIpUyhDi6cACSRvIXAOr9DT6OcDaiFgPIOkOYD6Quwv0fOC2iAgyCfYwSUeRWeKqt77zgblJ/1uBJuATyfE7ImI3sEHSWmCOpBbgkIj4dXKu24D3AT/rK/hdu3Zxyy23DOLrl9dvf/tb9u7dm6qYANrb22lpaal2GD04puKlMa60x9SxV6x45U3s2Sd+u/sA1u/KJKxDdm5kyUsPVyWmWlNKAhvqqmMysCnn9WbglCLaTO6n78SI2AIQEVskHZFzruUFzrUneZ5//A0kLSRTqXHkkUfS3t7ex9cbWnv37iUiUhUTQFdXl2MqQhpjgnTGldaYtrS9ylO/O4Q9+8TDHa8vxju1bieTDtjNMWqnvX3o7lBK459TsUpZSup5SW8D3p0c+lVEPFHesHoodJ0pimxTTN9iP6/oc0XEzcDNAI2NjXHFFVf085FD55ZbbqG9vZ00xQTQ1NTE3Llzqx1GD46peGmMK60xrdFUHvjZM5zWMIGFkw4F4KC6UVVbJiqNf05XXnllUe0GfA1M0uVkbmY+Ivn5jqSPD/Q8A7AZyL0FfQrwYpFt+uq7NRlmJHl8qYhzTeknDjOzPp09cyIN9WN4cN02Joyt4//84Vu48pzjfM2rBKVM4rgUOCUiPh0RnwZOBf66vGH18AgwQ9J0SXVkJljk30i9BLgkmY14KrA9GR7sq+8SYEHyfAHwk5zjF0k6UNJ0MpM1ViTn2yHp1GT24SU5fczM+rWjM7juzmbWtXZ4S5QyKOUamICunNddFB5eK4uI2CvpY8DdwCjg2xHxlKQPJ+9/A7gLOA9YC+wic69ar32TU98ALJJ0KbARuDDp85SkRWQmeuwFLouI7Pf9CHALcBCZyRt9TuAwM4PX7/G6d9VrNLft8jT5Miklgf0n8HCyHxhkZuL9R/lCeqOIuItMkso99o2c5wFcVmzf5Pg24Kxe+lwPXF/g+ErgrQOJ3cxGrvybkwEnrzIaUAJLhs4Wk5lyfjqZysv7gZmZFXDrQy3cuHQtAKc1TOBwXuUzTl5lM6AEFhEh6ccRcTLwWIViMjOradnKa/n6zGrypx87gS9ffBKrH3nIyauMShlCXC7pHRHxSNmjMTOrYR4yHFqlJLAzgb+R9DzQgTe0NLMRrq2jk280reWe5q20bNsFZIYMZ08bX7X7u0aCUhLYvLJHYWZWgwpVXNMmjGb+rMlOXEOglAT20Yj4RO4BSf9MZh1BM7Nhb13rTj7949+wd1/w8IbMda4508ZRt/8oPjv/BBrqx/ZzBiuHUhLYObwxWc0rcMzMbNjIVlu/69zHPc2/9VBhChSdwCR9BPgocIyk1dnDwFjgwQrEZmZWdYWqLcgMFf7BCUfy4TManLiqZCAV2H+TWXni8yR7ZyV2RERb4S5mZrUlt9IC3lBtnTDp0KouvmuvG0gCOw7YFBEXA0i6BPhT4HlJ1zqJmVmtyiatVzr28MvnWrsTVparrXQaSAK7CTgbQNJ7yKwl+HFgFpmtQ/6s7NGZmVVAdtr7E5u303jkwaxv7eieRQhJwpp5JFDdrU6sbwNJYKNyqqwPADdHxA+AH0haVf7QzMzKI39YsHnLq90JK3td67SGCTTUj2X9yx2eSVgjBpTAJO0fEXvJLIK7sMTzmJlVTDZZtbR0MvWEnSxZ9UKP+7Sy5kwbhyQajzyYcaPrXGXVoIEkntuB+yW9DPwO+BWApGOB7RWIzczsDdo6Olm8clP3Xlq5lRX0rK5evbOZZWtaAThl+jjeNmUc4GHB4aLoBBYR10taChwF3JNsYQKZTTEruSOzmY1AucN+r+3pYs3WHT2uV+3q3Mvqzdu7E1Su0xomcHDXdt58xMHs6uzi4Q1tnHrM4Vx5znFV+CZWKQNdjX55gWPPli8cMxsJcpPTQXWjuGDWJJaseqFHsgJ63HeV+/rMxnpALFvT2j21HeC1PV3d17BuuvMhbv7Vei4/61h+//gjvPvxMORrV2Y2JLJJK7uBe3afLIDVm9t7raROmHRojwps3Og6Lpg1ie+t2Mjpxx7eY8LFTfev47blz3Nf81bePfkAGo5p4MLZUz1UOEw5gZlZ2eXP+juobhTwetK6/KxjufysY3tUYCdO6VmBvW3qYb3ed3XT/eu4+VcbALiveSsNZ2QSWLbKunD2VFY/som/OaOh4t/VqscJzMzKbvHKTT0qLOiZtEAseNc0IDMJY8mqF1nwrulFV0oXzp7Krs69gHoMDY4fU+ekNYI4gZlZ2WUTTO7swGy1dVDdKG5c+hyj86qy0XWjik4+48fUceU5jeUP3GqKE5iZDdqOzuBf710DiDOOq+crv3iOT50/s8e1qc//7BkgU4ldM+/47sqpUCVlVgwnMDMbsNy1A9ds3UF7+2useSVTSf3X8hbaOvYAzfznh+YAPYf88u+/ciVlpXICM7OC8idiFLoXK9dpDROQxANrX6ahfgyfOn9m93se8rNKcAIzs279rcoOb1w7cM3WHYyPV7n+gycBdK+S4anrVmlOYGYjVP4wYH+rsuffi5U7FNjU1NT93LMAbag4gZmNAMUkK6/KbrXGCcysH7krSKR1AdjcGLPLMg0kWfVWWZmlmROYWR/Wte5k4W0rWdfaAQzsXqVK2NEZ3HT/Os6eObF77UCAJza3dyelO1e/2B0vOFnZ8OUEZtaH6+5sZl1rB9MmjGb+rMlDfq9SduuQbML6+eOvseaVZ7h9xcaCEyymTRjNutYOJysbEZzAzPqQmQre3OOm3ErIT1TZNQGzMwEXrdzUo6pq2barxyrsQPeagvc1b/UsQBsRnMBsxMrdGLG3X/YN9WO7b8Yt92fn3mOVHQIsVFmNH3NAd1V1cNd23jz1zX1uyJhd2NZsuHMCsxFr8cpN3csbDcV1rWLuscqtrLJ7W111znE80tKWrLD+EHPnvqXisZrVAicwG7Fyt94oRjEVW7ZdXzsJZ+XeY5XVW2V10tHjiv1aZiOGE5gNW/1Nfx/o1hu9VWz591hB7zsJ+x4rs/JxArNhZV3rTj7949/QcMTYHhVPOaa/Zxek3bazk0//+Df9rgtYaCdhzwQ0Kx8nMBtWrruzmQfXbePBdduATCKZPW18Waa/jx9Tx+i6/blx6TPdxwrdY9XXTsJmVj5OYDYsZIfxpo4bzSnTx1es4slWYbmrXLiyMqsOJzCreW0dnfzdolUsW9MKwDXzjq/YrEJvC2KWHvtVO4C+SBov6V5JzyWPBadiSTpX0hpJayVdXUx/Sdck7ddIem/O8ZMlPZm892VJSo5fJalZ0mpJSyUdXcnvbsVbvHITy9a0clrDBC4/a4Z39jUbIVKdwICrgaURMQNYmrzuQdIo4KvAPGAmcLGkmX31T96/CDgBOBf4WnIegK8DC4EZyc+5yfHHgdkRcSLwfeBfyvtVrVQXzp7KNfOO5ysfPIkrzznOQ3lmI0TaE9h84Nbk+a3A+wq0mQOsjYj1EdEJ3JH066v/fOCOiNgdERuAtcAcSUcBh0TEryMigNuyfSJiWURk7zxdDkwp15e0wclOh3fiMhtZ0n4NbGJEbAGIiC2SjijQZjKwKef1ZuCUfvpPJpOEcvtMBvYkz/OP57sU+FlvQUtaSKaKo76+nqampt6aDrn29na6urpSFRPAzp07HVMR0hgTpDMux1ScNMZUrKonMEn3AUcWeOuTxZ6iwLEosU+/55L058Bs4IzeTh4RNwM3AzQ2NsbcuXP7CWfotLS00N7eTppigsyOvqXEVOzqGEMZUyWlMSZIZ1yOqThpjKlYVU9gEXF2b+9J2irpqKR6Ogp4qUCzzUDuVfspwIvJ897699ZnMz2HBnPPhaSzySTWMyJid1Ff0MqutzUFvZW92chS9QTWjyXAAuCG5PEnBdo8AsyQNB14gczkjA/2038J8N+SvgRMIjNZY0VEdEnaIelU4GHgEuArAJLeDtwEnBsRhRKpVVg2cT36fHuPlS8a6sd45qHZCJT2BHYDsEjSpcBG4EIASZOAb0XEeRGxV9LHgLuBUcC3I+KpvvpHxFOSFgHNwF7gsojoSvp8BLgFOIjMda7sta7/B4wFFicz6zdGxAUV++bWQ/7OyPlrCnoCh9nIk+oEFhHbgLMKHH8ROC/n9V3AXcX2T967Hri+wPGVwFsLHO91qNMqq62jszt5ZXdG9soXZpbqBGYjV+6WJM1bXmVdawcN9WO4+ZLZXsHdzAAnMEuZto5OvtG0lnuat/bY8PHMxnq++P5ZrrrMrJsTmKVG/pqG2Q0fe9vk0cxGNicwS43smoZzpo2jbv9R3vDRzPrkBGapkZ0KX4mbks1s+HECs9TIrmloZlaMtC/ma2ZmVpArMOtVdp3Bs2dOZMmqF96wC/EFsybxvRUbad6yg6vOOY5HWtq6h//y1yjMPdd9zVu7H7PDhndt6OTEd3RWZOgwd0p+1mt7ulj/cgdXnXMc9z/7Er/r3Mdre7q6v9+b9h/Fxk27eXzPs55AYpZSTmApl//LN/+X7ECP3f/8oRzK/uz66dPdn9Fb2+w6g4tWbupeAQPg4Q1tANy5+sXu481bttPWsYdfPttKQ/3Y7r6/fLaVEyYdyhOb23l4Qxu3r9jY45y3r9jIxEPexMMb9tC6aFVFpsrf+lALNy5dW/C9Ldt/1+O75X4/gJ+3PMfoulEe2jRLISewlOrtfqis3F+yAztWB9Sx+lfri+o/fswBrGvt6F66KZvo1rd28MDal5kzbRwv7dhNy7ZdNNSP4cF123hw3bbuvrmvge5261o7GD/mAFq27aJl2y6OHCOWrWll8cpNFUgWmQ0FTpk+jrdNyWzKXVwFtpHGhuleZ9EspZzAUiR/9YnsgrXZ+6GgDBXYE89xKB2cOvvk7s/trW32F3zu0GBurNkhQuANQ435ySHroLpRXDBrEvc1b+Ud08bzxXvWcMLkQ5m+bwuvHnx0RZLFgndNZ3Td/r3Objzp6HEF+zU1bWXu3OPKHo+ZlYcTWAr0Vm1V4n6oW9pX0t7ezhV/+Jai+xT6BZ8/YzD7/MpzGvvtC9BwRub7fPevTwUyyeLiCg3TeXaj2fDkBFYl/VVbXn3CzKxvTmBVkL81CFSm2jIzG86cwIZQtur6yaoXadm2y9WWmdkgOIENgUI7CXtrEDOzwXECq7D23cHf3v54d+I6rWECs6eNd8VlZjZITmAV1r47eGDty05cZmZl5gRWYW8aBQvfcwwfPqPBicvMrIy8mG+FvdYFE8bUOXmZmZWZE1iFjTtQXorIzKwCnMAq7NAD5erLzKwCnMDMzKwmOYGZmVlNcgIzM7Oa5ARmZmY1yQnMzMxqkhOYmZnVJCcwMzOrSYqIascwrEnaAaypdhx5DgdernYQeRxTcdIYE6QzLsdUnDTG1J0Sc/IAAAdLSURBVBgRB/fXyGshVt6aiJhd7SBySVrpmPrnmIqXxrgcU3HSGlMx7TyEaGZmNckJzMzMapITWOXdXO0ACnBMxXFMxUtjXI6pODUbkydxmJlZTXIFZmZmNckJzMzMapITWIVJulDSU5L2SarqVFVJ50paI2mtpKurGUuWpG9LeknSb6odS5akqZKWSXo6+W93eQpiepOkFZKeSGL6bLVjypI0StLjku6sdiwAklokPSlpVbHTsYeCpMMkfV/SM8nfrXdWOZ7G5M8o+/OqpCuqGVMS15XJ3/HfSLpd0pt6betrYJUl6S3APuAm4O8joir/oCSNAp4FzgE2A48AF0dEczXiyYnrPcBO4LaIeGs1Y8mSdBRwVEQ8Julg4FHgfdX8s5IkYExE7JR0APAAcHlELK9WTFmSrgJmA4dExPkpiKcFmB0Rqbo5V9KtwK8i4luS6oDREdFe7big+/fDC8ApEfF8FeOYTObv9syI+J2kRcBdEXFLofauwCosIp6OiDSsxDEHWBsR6yOiE7gDmF/lmIiIXwJt1Y4jV0RsiYjHkuc7gKeByVWOKSJiZ/LygOSn6v/3KWkK8IfAt6odS5pJOgR4D/AfABHRmZbklTgLWFfN5JVjf+AgSfsDo4EXe2voBDZyTAY25bzeTJV/KdcCSdOAtwMPVzeS7qG6VcBLwL0RUfWYgH8D/oHMKENaBHCPpEclLax2MIljgFbgP5Ph1m9JGlPtoHJcBNxe7SAi4gXgC8BGYAuwPSLu6a29E1gZSLovGa/N/6l6hZNDBY5V/f/g00zSWOAHwBUR8Wq144mIroiYBUwB5kiq6pCrpPOBlyLi0WrGUcBpEXESMA+4LBmmrrb9gZOAr0fE24EOIC3XoeuAC4DFKYhlHJmRoenAJGCMpD/vrb3XQiyDiDi72jEUYTMwNef1FPoozUe65DrTD4DvRsQPqx1Prohol9QEnAtUc/LLacAFks4D3gQcIuk7EdHrL5yhEBEvJo8vSfoRmeHzX1YzJjL//jbnVM3fJyUJjEyifywitlY7EOBsYENEtAJI+iHwLuA7hRq7Ahs5HgFmSJqe/B/XRcCSKseUSsmEif8Ano6IL1U7HgBJ9ZIOS54fROYf+jPVjCkiromIKRExjczfp19UO3lJGpNMvCEZovsDqpvkAYiI3wKbJDUmh84CqjqBKsfFpGD4MLEROFXS6OTf4VlkrkEX5ARWYZL+WNJm4J3ATyXdXY04ImIv8DHgbjJ/IRZFxFPViCWXpNuBXwONkjZLurTaMZGpLP4C+P2cKcbnVTmmo4BlklaT+Z+ReyMiFdPWU2Yi8ICkJ4AVwE8j4udVjinr48B3k/+Gs4B/qnI8SBpNZmZyKkYZkgr1+8BjwJNkclSvy0p5Gr2ZmdUkV2BmZlaTnMDMzKwmOYGZmVlNcgIzM7Oa5ARmZmY1yQnMrMIkfTJZXXt1MiX/lGrHNBiSpiW3POyXd3yVpDl5x66V9IKkz/XXL1mFfKOkfx+K72G1zytxmFVQsmXG+cBJEbFb0uFAXZXDGpSIaJG0CXg3cD+ApOOBgyNiRYEu/xoRX0ja9dVvhaRXyKxsb9YvV2BmlXUU8HJE7AaIiJezSx0l+1b9szL7fK2QdGxy/I8kPZws+nqfpInJ8WuV2T+tSdJ6SX+bHJ+mzP5S30wqvXuS1TpI2s5Onh+ebDWCpL+U9ENJP5f0nKR/yQYs6VJJzyZ9v9lLRXQ7mdU3sopdDLbUfmZv4ARmVln3AFOThPA1SWfkvf9qRMwB/p3Myu6Q2Q/p1GTR1zvIrPaedTzwXjLr+30mWbMRYAbw1Yg4AWgH/rSI2GYBHwB+D/iAMht5TgL+L3AqmRUaju+l7yLgfcmWFyTnuaOIzyy1n9kbeAjRrIKSDShPJjNsdibwPUlX52zQd3vO478mz6ck7Y4iM9y4IeeUP02qud2SXiKzdBJkFkBdlTx/FJhWRHhLI2I7gKRm4GjgcOD+iGhLji8GjivwvX4r6SngLElbgT0R0e+ag6X2MyvECcyswiKiC2gCmiQ9CSwAbsm+nds0efwK8KWIWCJpLnBtTpvdOc+7eP3fcP7xg5Lne3l9pCV/a/ZC5yq07U5vssOBWxnYMGCp/cx68BCiWQVJapQ0I+fQLCB319sP5Dz+Onl+KJnt3SGT7AajBTg5ef5nRbRfAZwhaVwyzNfXUOQPgPMY+DBgqf3MenAFZlZZY4GvJFuh7AXWArm7BB8o6WEy/zN5cXLsWmCxpBeA5WQ29yvVF4BFkv4C+EV/jSPiBUn/RGYH6hfJbPmxvZe27ZKWAxMjYkOhNuXsZ5bPq9GbVUkyI3B2RLxc7VhySRqbXLvbH/gR8O2I+FGJ57oW2JmdRl9E+78k82fysVI+z0YWDyGaWb5rJa0isxHkBuDHgzjXTmChpM/111DSlcA1wKuD+DwbQVyBmZlZTXIFZmZmNckJzMzMapITmJmZ1SQnMDMzq0lOYGZmVpP+B7fD+ydVs8tWAAAAAElFTkSuQmCC\n" + ], + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "for _, curve in ccurves.iterrows():\n", + " plot_ccurve(curve['curve'], area=area * curve['area'], save=f'C/{curve[\"desc\"]}.pdf')" + ] + }, + { + "cell_type": "code", + "execution_count": 173, + "metadata": { + "autoscroll": false, + "collapsed": false, + "ein.hycell": false, + "ein.tags": "worksheet-0", + "slideshow": { + "slide_type": "-" + } + }, + "outputs": [ + { + "data": { + "text/plain": [ + "desc huge_hell\ncurve [[-1.0, -0.1947314], [-0.9775, -0.1942969], [-...\narea 338\nj_c 0.000567871\nu_cc 7.02243\nff 0.653348\neta 0.0260545\np_mlp 0.880641\nu_mlp 5.3225\nName: huge_hell, dtype: object" + ] + }, + "execution_count": 173, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ccurves.loc['huge_hell']" + ] + } + ], + "metadata": { + "kernelspec": { + "argv": [ + "/usr/bin/python3", + "-m", + "ipykernel_launcher", + "-f", + "{connection_file}" + ], + "display_name": "Python 3", + "env": null, + "interrupt_mode": "signal", + "language": "python", + "metadata": null, + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.0" + }, + "name": "c.ipynb" + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/SZ/auswertung/figs/B/j_sc.pdf b/SZ/auswertung/figs/B/j_sc.pdf new file mode 100644 index 0000000..3187120 Binary files /dev/null and b/SZ/auswertung/figs/B/j_sc.pdf differ diff --git a/SZ/auswertung/figs/B/u_cc.pdf b/SZ/auswertung/figs/B/u_cc.pdf new file mode 100644 index 0000000..16c7fd2 Binary files /dev/null and b/SZ/auswertung/figs/B/u_cc.pdf differ diff --git a/SZ/auswertung/figs/C/3x3_hell.pdf b/SZ/auswertung/figs/C/3x3_hell.pdf new file mode 100644 index 0000000..b39e622 Binary files /dev/null and b/SZ/auswertung/figs/C/3x3_hell.pdf differ diff --git a/SZ/auswertung/figs/C/3x3_schaltung_1.pdf b/SZ/auswertung/figs/C/3x3_schaltung_1.pdf new file mode 100644 index 0000000..b2ea587 Binary files /dev/null and b/SZ/auswertung/figs/C/3x3_schaltung_1.pdf differ diff --git a/SZ/auswertung/figs/C/3x3_schaltung_2.pdf b/SZ/auswertung/figs/C/3x3_schaltung_2.pdf new file mode 100644 index 0000000..505fd23 Binary files /dev/null and b/SZ/auswertung/figs/C/3x3_schaltung_2.pdf differ diff --git a/SZ/auswertung/figs/C/3x3_schaltung_3.pdf b/SZ/auswertung/figs/C/3x3_schaltung_3.pdf new file mode 100644 index 0000000..c97b022 Binary files /dev/null and b/SZ/auswertung/figs/C/3x3_schaltung_3.pdf differ diff --git a/SZ/auswertung/figs/C/3x3_schaltung_4.pdf b/SZ/auswertung/figs/C/3x3_schaltung_4.pdf new file mode 100644 index 0000000..53f5193 Binary files /dev/null and b/SZ/auswertung/figs/C/3x3_schaltung_4.pdf differ diff --git a/SZ/auswertung/figs/C/3x3_verschattung_1.pdf b/SZ/auswertung/figs/C/3x3_verschattung_1.pdf new file mode 100644 index 0000000..5e53f10 Binary files /dev/null and b/SZ/auswertung/figs/C/3x3_verschattung_1.pdf differ diff --git a/SZ/auswertung/figs/C/3x3_verschattung_2.pdf b/SZ/auswertung/figs/C/3x3_verschattung_2.pdf new file mode 100644 index 0000000..7375da6 Binary files /dev/null and b/SZ/auswertung/figs/C/3x3_verschattung_2.pdf differ diff --git a/SZ/auswertung/figs/C/3x3_verschattung_3.pdf b/SZ/auswertung/figs/C/3x3_verschattung_3.pdf new file mode 100644 index 0000000..bbf3494 Binary files /dev/null and b/SZ/auswertung/figs/C/3x3_verschattung_3.pdf differ diff --git a/SZ/auswertung/figs/C/huge_hell.pdf b/SZ/auswertung/figs/C/huge_hell.pdf new file mode 100644 index 0000000..dab0dfa Binary files /dev/null and b/SZ/auswertung/figs/C/huge_hell.pdf differ diff --git a/SZ/auswertung/figs/C/huge_verbraucher.pdf b/SZ/auswertung/figs/C/huge_verbraucher.pdf new file mode 100644 index 0000000..f61cc8d Binary files /dev/null and b/SZ/auswertung/figs/C/huge_verbraucher.pdf differ diff --git a/SZ/auswertung/utility.py b/SZ/auswertung/utility.py index c95c164..2d98c8f 100644 --- a/SZ/auswertung/utility.py +++ b/SZ/auswertung/utility.py @@ -1,7 +1,6 @@ import numpy as np import matplotlib.pyplot as plt from matplotlib.figure import Figure -import seaborn from matplotlib import rc from scipy import interpolate from scipy import optimize @@ -37,7 +36,7 @@ def plot_ccurve(ccurve, log=False, area=None, compliance=.99, median=False, if median: compliance = np.median(ccurve[:, 0]) - plot_ccurve_line(ax, ccurve, compliance=compliance, **pyplot_args) + plot_ccurve_line(ax, ccurve, area=area, compliance=compliance, **pyplot_args) if log: ax.set_yscale('log') @@ -51,11 +50,11 @@ def plot_ccurve_line(ax, ccurve, area=None, marker='.', compliance=.99, **pyplot if area: c /= area - ax.errorbar(v, c, linestyle='None', marker=marker, markersize=1.5, alpha=1, + ax.errorbar(v, c, linestyle='None', marker=marker, markersize=2, alpha=1, **pyplot_args) ax.set_xlabel("Spannung V [V]") ax.set_ylabel("Stromstaerke I [A]" \ - if area else r"Stromdichte j [$\frac{A}{cm^2}$]") + if not area else r"Stromdichte j [$\frac{A}{cm^2}$]") ax.grid(True, which='both') ax.set_xlim(v[0], v[-1]) @@ -84,7 +83,8 @@ def analyze_ccurve(ccurve, area, int_ein): bracket=(0, u_cc), bounds=(0, u_cc), method='bounded').x p_mlp = -interpolated(u_mlp)*u_mlp - ff = -p_mlp / i_c * u_cc + ff = -p_mlp / (i_c * u_cc) eta = p_mlp / (int_ein * area) - return -j_c, u_cc, u_mlp, p_mlp, ff, eta + return {'j_c': -j_c, 'u_cc': u_cc, 'u_mlp': u_mlp, 'p_mlp': p_mlp, + 'ff': ff, 'eta': eta}