diff --git a/GL/scripts/Kaustik.ipynb b/GL/scripts/Kaustik.ipynb new file mode 100644 index 0000000..4c6cc30 --- /dev/null +++ b/GL/scripts/Kaustik.ipynb @@ -0,0 +1,232 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 37, + "metadata": { + "autoscroll": false, + "collapsed": false, + "ein.hycell": false, + "ein.tags": "worksheet-0", + "slideshow": { + "slide_type": "-" + } + }, + "outputs": [], + "source": [ + "\"\"\"Calculation of the Kaustik of a Laserbeam.\"\"\"\n", + "\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "import importlib.util\n", + "from SecondaryValue import SecondaryValue" + ] + }, + { + "cell_type": "code", + "execution_count": 48, + "metadata": { + "autoscroll": false, + "collapsed": false, + "ein.hycell": false, + "ein.tags": "worksheet-0", + "slideshow": { + "slide_type": "-" + } + }, + "outputs": [], + "source": [ + "# Input Parameters\n", + "R = 100 # cm\n", + "L = 46 # cm\n", + "f = 15 # cm\n", + "lam = 633e-8 # cm\n", + "lens_pos = 15 # cm" + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "metadata": { + "autoscroll": false, + "collapsed": false, + "ein.hycell": false, + "ein.tags": "worksheet-0", + "slideshow": { + "slide_type": "-" + } + }, + "outputs": [], + "source": [ + "# Optical Matrix Elements\n", + "A = SecondaryValue('1-x/f', defaults=dict(f=f))\n", + "B = SecondaryValue('s+x-x*s/f', defaults=dict(f=f))\n", + "C = SecondaryValue('-1/f', defaults=dict(f=f))\n", + "D = SecondaryValue('1-s/f', defaults=dict(f=f))\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "metadata": { + "autoscroll": false, + "collapsed": false, + "ein.hycell": false, + "ein.tags": "worksheet-0", + "slideshow": { + "slide_type": "-" + } + }, + "outputs": [], + "source": [ + "w0 = SecondaryValue('((l/pi)^2*L*(R-L))^(1/4)', defaults=dict(l=lam, L=L, R=R, pi=np.pi))" + ] + }, + { + "cell_type": "code", + "execution_count": 45, + "metadata": { + "autoscroll": false, + "collapsed": false, + "ein.hycell": false, + "ein.tags": "worksheet-0", + "slideshow": { + "slide_type": "-" + } + }, + "outputs": [], + "source": [ + "# b parameter\n", + "b = SecondaryValue('l/(pi*w0^2)', defaults=dict(l=lam, pi=np.pi), dependencies=dict(w0=w0))\n", + "new_b = SecondaryValue('b*(A*D-C*B)/(A^2+B^2*b^2)', dependencies=dict(A=A, B=B, C=C, D=D, b=b))\n", + "b_before = SecondaryValue('b/(1+x^2*b^2)', dependencies=dict(b=b))" + ] + }, + { + "cell_type": "code", + "execution_count": 50, + "metadata": { + "autoscroll": false, + "collapsed": false, + "ein.hycell": false, + "ein.tags": "worksheet-0", + "slideshow": { + "slide_type": "-" + } + }, + "outputs": [], + "source": [ + "# omega\n", + "w = SecondaryValue('sqrt(l/(p*b))', defaults=dict(l=lam, p=np.pi), dependencies=dict(b=new_b))\n", + "w_before = SecondaryValue('sqrt(l/(p*b))', defaults=dict(l=lam, p=np.pi), dependencies=dict(b=b_before))" + ] + }, + { + "cell_type": "code", + "execution_count": 58, + "metadata": { + "autoscroll": false, + "collapsed": false, + "ein.hycell": false, + "ein.tags": "worksheet-0", + "slideshow": { + "slide_type": "-" + } + }, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 58, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": [ + "iVBORw0KGgoAAAANSUhEUgAAAYAAAAD4CAYAAADlwTGnAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3deZxU9Znv8c/T1d1AA4JAi8giqGAERMUGUaMxJk4gY2TMZJFJBhITEbeZ5E4WM3NvJsmdudfJ5sTRgagwSBaRiUvIDY4aJ3FJALtBQVDRlqi0IIvIDt1013P/+FWToqnuLrqr6tTyfb9e/ao6+3MsOd+qc37n/MzdERGR0lMWdQEiIhINBYCISIlSAIiIlCgFgIhIiVIAiIiUqPKoCzgegwYN8pEjR0ZdhohIQVm1atUOd69uO76gAmDkyJHU1dVFXYaISEExszdTjdcpIBGREqUAEBEpUQoAEZESpQAQESlRCgARkRKlABARKVEKABGREqUAEBHJZ0374dFbYefGjK9aASAiks/WPQgr58LedzK+agWAiEg+q50P1WfBiAszvmoFgIhIvnp7FWx5ASZ9AcwyvnoFgIhIvqpdABW9YcKns7J6BYCISD46+F44/z/hk9DzhKxsQgEgIpKPXrgfmg9CzbVZ24QCQEQk37hD3QIYWgNDzsnaZhQAIiL55o1n4N3XwsXfLFIAiIjkm9r50LM/jLs6q5tRAIiI5JO978Ar/w/O+yxU9MrqphQAIiL5ZPVPIN6c1Yu/rdIKADObamYbzKzezG5NMd3M7I7E9LVmNjFp2gIz22Zm61Isd0tivevN7Lvd2xURkQIXb4FVC+G0y2Dg6VnfXKcBYGYx4C5gGjAWmGFmY9vMNg0YnfibDcxNmrYQmJpivR8EpgMT3H0c8P0u1C8iUjxefQz2NEBNdi/+tkrnF8BkoN7dN7p7E7CYcOBONh1Y5MEKoL+ZDQFw96eBnSnWewNwm7s3Jubb1tWdEBEpCnXzoe8QOPOjOdlcOgEwFNiUNNyQGHe887Q1BrjEzFaa2VNmNinVTGY228zqzKxu+/btaZQrIlKAdv4R6p+EibMgVp6TTaYTAKmeQORdmKetcuBEYArwVWCJ2bFPO3L3u929xt1rqqur0yhXRKQArVoIVgYTZ+Zsk+kEQAMwPGl4GLC5C/OkWu9DidNGzwFxYFAa9YiIFJfmRnj+J3DmNOjX2cmTzEknAGqB0WY2yswqgWuApW3mWQrMTLQGmgLsdvctnaz3EeByADMbA1QCO46rehGRYvDSUjjwbk6afibrNADcvRm4GXgMeBlY4u7rzWyOmc1JzLYM2AjUA/cAN7Yub2b3A8uBM82swcxaL28vAE5LNA9dDMxy985OG4mIFJ+6+XDiKDjtgzndbFpXGtx9GeEgnzxuXtJ7B25qZ9kZ7YxvAj6bdqUiIsVo63p4azlc8b+hLLf35upOYBGRKNUtgFiP8OiHHFMAiIhEpXEfrHkgPPStakDON68AEBGJyotLoGlv1h/73B4FgIhIFNxDn7+Dz4ZhKe+DzToFgIhIFBrqYOuLUPN5OPYe2JxQAIiIRKFuPlT2gQmfiqwEBYCISK4d2AnrHoIJn4YefSMrQwEgIpJrL/wMWhoju/jbSgEgIpJL8Xho+z98CgweF2kpCgARkVz64+9g58bIv/2DAkBEJLdq50PVQBjbtl+t3FMAiIjkyp7NsOHR8NiH8h5RV6MAEBHJmdWLwFvg/M9HXQmgABARyY2WZlh1H5z+IRgwKupqAAWAiEhuvPoo7N2cFxd/WykARERyoXY+nDAURn8k6kqOUACIiGTbu6/Dxt+Gc/+xtPrhygkFgIhIttUtgLJymDgz6kqOogAQEcmmpgPw/E/hrKug7+CoqzlKWgFgZlPNbIOZ1ZvZrSmmm5ndkZi+1swmJk1bYGbbEp2/p1r3V8zMzWxQ13dDRCRPrX8IDu2CSV+MupJjdBoAZhYD7gKmAWOBGWY2ts1s04DRib/ZwNykaQuBqe2sezhwBfDW8RYuIlIQau+F6rPg1IuiruQY6fwCmAzUu/tGd28CFgNt72GeDizyYAXQ38yGALj708DOdtZ9O/A1wLtUvYhIPnt7FWx+PjT9jKjTl46kEwBDgU1Jww2Jccc7z1HM7CrgbXdf08l8s82szszqtm/fnka5IiJ5onY+VPQOz/3PQ+kEQKrYavuNPZ15/jSzWRXwD8A3O9u4u9/t7jXuXlNdXd3Z7CIi+eHATlj3IJzzaeh5QtTVpJROADQAw5OGhwGbuzBPstOBUcAaM3sjMf9qMzs5jXpERPLfCz+H5kNQkz93/raVTgDUAqPNbJSZVQLXAEvbzLMUmJloDTQF2O3uW9pbobu/6O4nuftIdx9JCJCJ7v5O13ZDRCSPxOOhz98RF8LJ46Oupl2dBoC7NwM3A48BLwNL3H29mc0xszmJ2ZYBG4F64B7gxtblzex+YDlwppk1mFn+xqGISCZs/G3o9CWPv/0DpHVPsrsvIxzkk8fNS3rvwE3tLDsjjfWPTKcOEZGCUDsfqgbB2KuirqRDuhNYRCSTdm0KT/6cODMvOn3piAJARCSTVi0Ed6jJj05fOqIAEBHJlOYmWH0fjJkK/UdEXU2nFAAiIpnyyq9g//a8fO5PKgoAEZFMqZ0PJ46E0y+PupK0KABERDJh60vw5u+h5looK4xDa2FUKSKS7+rmQ6wHnPvZqCtJmwJARKS7GvfCmsUw/uPQe2DU1aRNASAi0l1rH4CmfQVz8beVAkBEpDvcw8XfIefA0POjrua4KABERLrjrRWw7aXw3J887PSlIwoAEZHuqL0XevSDsz8RdSXHTQEgItJV+7bBS7+Ec/8KKntHXc1xUwCIiHTV6kUQPxz6/C1ACgARka6It0Ddf8CoD8Cg0VFX0yUKABGRrnj1MdjTUHBNP5MpAEREuqL2Xug7BM78aNSVdJkCQETkeO3cCK8/Ced/DmJpdayYlxQAIiLHq24BWAwmzoq6km5RAIiIHI/DB+H5n8JZV8IJQ6KuplvSCgAzm2pmG8ys3sxuTTHdzOyOxPS1ZjYxadoCM9tmZuvaLPM9M3slMf/DZta/+7sjIpJl6x+Gg+8V9MXfVp0GgJnFgLuAacBYYIaZjW0z2zRgdOJvNjA3adpCYGqKVT8BjHf3CcCrwDeOt3gRkZyrvRcGjYGRl0RdSbel8wtgMlDv7hvdvQlYDExvM890YJEHK4D+ZjYEwN2fBna2Xam7P+7uzYnBFcCwru6EiEhOvL0a3l4Vvv0X2HN/UkknAIYCm5KGGxLjjneejlwLPJpqgpnNNrM6M6vbvn37caxSRCTD6uZDRRWcc03UlWREOgGQKua8C/OkXrnZPwDNwM9STXf3u929xt1rqqur01mliEjmHXwPXnwQzv4k9OwXdTUZkU4D1gZgeNLwMGBzF+Y5hpnNAq4EPuTuaQWGiEgkXrgfmg8WxcXfVun8AqgFRpvZKDOrBK4BlraZZykwM9EaaAqw2923dLRSM5sKfB24yt0PdKF2EZHciMfDxd9hk2HIhKiryZhOAyBxofZm4DHgZWCJu683szlmNicx2zJgI1AP3APc2Lq8md0PLAfONLMGM2t9bN6dQF/gCTN7wczmZWqnREQy6o9Pwc7Xi+rbP6R3Cgh3X0Y4yCePm5f03oGb2ll2Rjvjz0i/TBGRCNXeC70GwNi2DSALm+4EFhHpyK5NsGEZTJwJFT2jriajFAAiIh2pWxBea66Nto4sUACIiLSnuTH0+jVmKpx4atTVZJwCQESkPesfgQM7YPJ1UVeSFQoAEZH2PHc3DDwDRl0WdSVZoQAQEUnl7dXwdh1Mug7KivNQWZx7JSLSXbX3QkVvODdlS/aioAAQEWnrwE548RdwzqeL5rk/qSgARETaWr0IWhrD6Z8ipgAQEUkWbwmPfT71Yhjctu+r4qIAEBFJ9trjsOutom36mUwBICKS7Ll7oO8QeN+VUVeSdQoAEZFW774Orz8J538eYhVRV5N1CgARkVa190JZOZw/K+pKciKtx0GLyJ+4OwcPt7BzfxM79zex990t9Prj44y/8hYqy/WdqmA17YfnfxYe+dz35KiryQkFgJS05pY4ew41s+tAE7sOHg6vBw6Hv4OH2X2giZ0HDvNe4mD/3oHw2tgcP7KOWbHH+HbFfew4azKDzrwwwr2Rblm7BBp3F33Tz2QKACkKhw63sPdQM7uTD+KJ92Hc4aMP8AfD695Dze2u0wz69ihnQO9KTuxdySn9ezLulBOODA+oCq+DKsYTX/ILBqxfCAqAwuQeTv8MPhtGTIm6mpxRAEjkWuLOvsZm9hwMB+Q9hxKvBw+z91CbcUdNC8N7DjXTlPSNvK0yg369KuhfVUm/XhUM6lPJGSf1SYyroH/rtKT3J1ZV0LdnBbEyS28nzv0rWH0ffOSfofegDP2XkZx5azlsXQcf+1FI/hKhAJDj5u40NsfZ39jM/sYW9jU2s7+p+cjw/qThfY0tHGhqDvM0NnOgqeXI+32Hmtl7qJm9je1/C2/VqyJG357lnNCrgr49y+lfVcnwAVVHhk/oGV779argxKrKxIE9HNT79iinLN0DeVdNvg5q74FVC+HSr2R3W5J5z90THvlw9iejriSn0goAM5sK/AiIAfe6+21tplti+keBA8Dn3H11YtoC4Epgm7uPT1pmAPAAMBJ4A/iUu7/Xzf0pefG409QSp/FwnEPNLRxsauHg4fB3KPn94fgx4w42tXDoyPQWDh6OHzV9f+LAvb+phZa4p1VPZayM3j1iVFWW06dHOb17xOjTo5zBfXvSJ+nA3XpwP+HIuApO6FVO38T0ilieX1ytPhNOuyz0HnXxlyCm71YFY+878PJSmHw9VPaOupqc6vT/UjOLAXcBVwANQK2ZLXX3l5JmmwaMTvxdAMxNvAIsBO4EFrVZ9a3Ak+5+m5ndmhj+etd3pX2HDrfQ1BLH4+A4cQ/fYh2Iu4MTxuG4h3Hu4bTgUeNILJeY/3BLnJa40xz38NoSP/K+7bSOhptbnOZ4nKbmOI3NcZpawvsjfy1xGptbjgwfM0/S++Y0D8xtVcbK6FlRRq/KGL0qYvRM/PWqiFHdtwe9KmJUVcbo3SMcyKsSB/LeleGg3rtHefir/NNBvqqyvLRaxUy+HhbPgA2/LrrOw4vaqoUQb4ZJX4i6kpxL52vKZKDe3TcCmNliYDqQHADTgUXu7sAKM+tvZkPcfYu7P21mI1OsdzpwWeL9fcDvyFIA/NOvX+KnK97KxqozxiwchCvLy+hRXnbk/ZG/xHC/qkoqY2X0qCijR+zY6cnDVZXl9Koso1dFjB6Jg3mvithRB/lelTF6lpdRnu/fsAvBmI9A/xGw8m4FQKFoOQx1/wFnfBgGnh51NTmXTgAMBTYlDTfwp2/3Hc0zFNjSwXoHu/sWAHffYmYnpZrJzGYDswFGjBiRRrnHmjZ+CCMH9sbMKDOwsF7KwpvEOMOMo96bGUboC+KYcWaUx4zyMqM8VkZ5mRErMypiRqws9XB5LIwrLytLmhaGyxLrlgJWFoNJX4Qnvglb18PgcVFXJJ15+Vew7x2Y9KOoK4lEOgGQ6qjU9jxDOvN0ibvfDdwNUFNT06V1XnzGIC4+Qy0zJAfO+2v47f8JXQl+rDQPKgWl9l7ofyqMviLqSiKRzu/+BmB40vAwYHMX5mlrq5kNAUi8bkujFpH8VjUgtCRZuwQOqk1DXtu6Ht78fTj3XxaLuppIpBMAtcBoMxtlZpXANcDSNvMsBWZaMAXY3Xp6pwNLgdYHbswCfnkcdYvkr8mz4fCB8FgByV/P3QPlPcOvthLVaQC4ezNwM/AY8DKwxN3Xm9kcM5uTmG0ZsBGoB+4Bbmxd3szuB5YDZ5pZg5m1Xmq/DbjCzF4jtDA6qmmpSMEaMgFGXBjuC4i3RF2NpHJwF6x9AMZ/IvxqK1FpNVZ292WEg3zyuHlJ7x24qZ1lU/ao7O7vAh9Ku1KRQjJ5Nvzi81D/m9A6SPLLmvvDr7QS6PSlI2r7J5INZ30sdCqy8sdRVyJtxePh9M+wSXDKuVFXEykFgEg2xCqg5trQuciO16KuRpK9/t+w8/XwK63EKQBEsuX8z0FZRWhqKPlj5TzoMxjG/kXUlUROASCSLX1OgnFXh9ZAjXujrkYgdPlY/0T4dVZeGXU1kVMAiGTTBddD015YszjqSgTCDXplFaHPX1EAiGTV0PPhlPPCgcczcnO8dNWhPeHX2Liroe/gqKvJCwoAkWwyC08J3fEqbPxd1NWUtjX3h19jF8zpfN4SoQAQybZxV0PVoND0UKIRj4dfYUNrYNj5UVeTNxQAItlW0RPOnwWvPgrvvRl1NaXp9f+Gd+v17b8NBYBILtRcC5iahEblSNNP9dOQTAEgkgv9hsH7/hxWL4KmA1FXU1rU9LNdCgCRXLngeji0C9b9IupKSouafrZLASCSK6deDCeNC11GqklobrQ2/Rz/cTX9TEEBIJIrZuHpk1tfhLdWRF1NaWht+jn5+qgryUsKAJFcmvAp6NkvXJSU7FLTz04pAERyqbI3TJwZOiPf3RB1NcVNTT87pQAQybXJswHXjWHZpqafnVIAiORa/xHwvith1UJo2h91NcVJTT/TogAQicKUG0OT0LUPRF1JcVLTz7SkFQBmNtXMNphZvZndmmK6mdkdielrzWxiZ8ua2blmtsLMXjCzOjObnJldEikAI6bAkHNgxTw1Cc00Nf1MW6cBYGYx4C5gGjAWmGFmY9vMNg0YnfibDcxNY9nvAt9293OBbyaGRUqDWfgVsGNDuFgpmXPkqZ9q+tmZdH4BTAbq3X2juzcBi4G2V1WmA4s8WAH0N7MhnSzrwAmJ9/2Azd3cF5HCMu7qcJFyxdyoKykeyU0/h6rpZ2fSCYChwKak4YbEuHTm6WjZLwHfM7NNwPeBb6TauJnNTpwiqtu+fXsa5YoUiPIeUPOFcLFy+6tRV1McXn8y0fRT3/7TkU4AWIpxbU9atjdPR8veAHzZ3YcDXwbmp9q4u9/t7jXuXlNdXZ1GuSIFpOZaiFXCcz+OupLisPwu6DtEHb6nKZ0AaACGJw0P49jTNe3N09Gys4CHEu//k3C6SKS09KmGsz8JL/wcDr4XdTWFbdvLsPG3MOmLavqZpnQCoBYYbWajzKwSuAZY2maepcDMRGugKcBud9/SybKbgQ8k3l8OvNbNfREpTBfMgcMHYPVPoq6ksK34dyjvleh7QdJR3tkM7t5sZjcDjwExYIG7rzezOYnp84BlwEeBeuAA8PmOlk2s+jrgR2ZWDhwitB4SKT1DJsDIS8LFyyk3QqzTf5bS1v4dsOYBOPevoGpA1NUUjLT+T3P3ZYSDfPK4eUnvHbgp3WUT458FdJleBMKvgAc+Axt+rUcXdEXdAmhphCk3RF1JQdGdwCL54Mxp0P9UNQntiubG0NXmGR+G6jOjrqagKABE8kFZLDRdfGs5bH4+6moKy7qHYN/WcPpMjosCQCRfnPdZqOwTHg8h6XGHFXdB9Vlw+uVRV1NwFAAi+aJnvxAC6x6Eve9EXU1heONZeOfFcO7fUt12JB1RAIjkk8mzId4cLmpK51bMhaqBoac1OW4KAJF8MvB0GDMVaufD4UNRV5Pf3n0dNiwL7f4rekVdTUFSAIjkmyk3wIEd8OKSqCvJbyt/DGXl4c5f6RIFgEi+GXUpnHw2/OHO8HRLOdbBXfD8T+HsT0Dfk6OupmApAETyjRlceEvoK6D+N1FXk5+e/wkc3q8bv7pJASCSj8Z/HPqeAsv/LepK8k9Lczj9c+r7Q69q0mUKAJF8FKsI327/+DRsWRN1NfnllV/B7k1woW786i4FgEi+On8WVPYN1wIkcIff3wEDTgutpaRbFAAi+apnvxAC6x6E3Q1RV5Mf3vwDbF4NF94cHp8h3aIAEMlnF8wJr3pIXPCHO6BqUHjss3SbAkAkn/UfHjqPX3UfHNoddTXR2vYKvPpf4W5p3fiVEQoAkXx30c3QtBdWL4q6kmgt/7fQ45du/MoYBYBIvjvlvNBj2Ip50HI46mqisfcdWLsEzvsM9B4YdTVFQwEgUgguugX2NMD6R6KuJBor54WH5F2YsuNB6SIFgEghOOMKGDQmXAR1j7qa3GrcG56OetbHQvNPyZi0AsDMpprZBjOrN7NbU0w3M7sjMX2tmU1MZ1kzuyUxbb2Zfbf7uyNSpMrKQtPHd9bCG89EXU1urf5JuAB+0d9EXUnR6TQAzCwG3AVMA8YCM8xsbJvZpgGjE3+zgbmdLWtmHwSmAxPcfRzw/UzskEjRmvBp6F0dboQqFS2HYcW/w4iLYFhN1NUUnXR+AUwG6t19o7s3AYsJB+5k04FFHqwA+pvZkE6WvQG4zd0bAdx9Wwb2R6R4VfQM/QbXPxF6wSoF6x8Jj324WN/+syGdABgKbEoabkiMS2eejpYdA1xiZivN7Ckzm3Q8hYuUpEnXhcdDPHt71JVkn3u45jFoDIz+SNTVFKV0AiBVR5ttr0K1N09Hy5YDJwJTgK8CS8yO7dTTzGabWZ2Z1W3fvj2NckWKWK/+MOlaWP9w6BGrmL3+ZLjmcdEt4RqIZFw6/1UbgOFJw8OAzWnO09GyDcBDidNGzwFxYFDbjbv73e5e4+411dXVaZQrUuSm3ARlFfD7H0VdSXY980M4YShMuCbqSopWOgFQC4w2s1FmVglcAyxtM89SYGaiNdAUYLe7b+lk2UeAywHMbAxQCezo9h6JFLu+g8MNUWvuhz1boq4mO95cDm/+Pnz7L6+Mupqi1WkAuHszcDPwGPAysMTd15vZHDNLPKmKZcBGoB64B7ixo2UTyywATjOzdYSLw7PcS62Bs0gXXfQ34cao5UX6qOhnfwhVA2HizKgrKWpWSMfcmpoar6uri7oMkfzw4BfhlWXw5XVQNSDqajJny1r48SVw+f+ES78adTVFwcxWufsx7Wh1ZUWkUL3/y6Ff3OfuibqSzHr2h6Gl06Troq6k6CkARArV4HGhV6yVc6FxX9TVZMaO+tD2f/IXQ4snySoFgEghe///gIPvwer7oq4kM35/O5T3gCnq7zcXFAAihWzEBXDqxaHf4ObGqKvpnl2bYM3icOG3z0lRV1MSFAAihe7Sr8LezYXfYcwf/i28XnRLtHWUEAWASKE77TIYPiXcOFWovwL2bIZVC+GcGdB/RNTVlAwFgEihM4MPfqOwfwU880PwFjX7zDEFgEgxGPUBGHFhOJAePhR1Ncdnd0O4iH3uZ+DEU6OupqQoAESKgRlcdmv4FfD8T6Ku5vg880PwOFz6lagrKTkKAJFiMeoDoeOUQvoVsGtTOG113md17j8CCgCRYlGIvwKe+UF4vUTf/qOgABApJqMuDfcFPPMDOHww6mo6tusteP6nMPGvof/wzueXjFMAiBQTM/jg38PeLfDc3VFX07Hf/Uuo95K/i7qSkqUAECk2I98Po/8sXAs4+F7U1aS29SVY83OYPBv6DYu6mpKlABApRh/6Rzi0G57916grSe3J70BlH337j5gCQKQYnTweJnwaVs6D3W9HXc3R3lwOrz4K7/9ScfVjUIAUACLF6oN/H9rXP3Vb1JX8iTv85h+hz8lwwQ1RV1PyFAAixerEU0OnKs//FLZviLqaYMMy2LQyNFetrIq6mpKnABApZpf8XTjX/vj/jLoSaG6Cx/8XDBwN5/111NUICgCR4tZ7IHzg6/Da4/DqY9HWsnIu7Hwdpt4GsfJoaxEgzQAws6lmtsHM6s3s1hTTzczuSExfa2YTj2PZr5iZm9mg7u2KiKQ0eTYMGgP/dWt0j4ve+w489V0YMw1GfziaGuQYnQaAmcWAu4BpwFhghpmNbTPbNGB04m82MDedZc1sOHAF8Fa390REUiuvDN+6d26EFf8eTQ2/+Ta0NMFH/jma7UtK6fwCmAzUu/tGd28CFgPT28wzHVjkwQqgv5kNSWPZ24GvAd7dHRGRDpzxIXjflfDU90LnK7m0qTbc9DXlRhh4em63LR1KJwCGApuShhsS49KZp91lzewq4G13X9PRxs1stpnVmVnd9u3b0yhXRFL6s3+CeDM8+rXcbbO5CX71N3DCUD3uOQ+lEwCWYlzbb+ztzZNyvJlVAf8AfLOzjbv73e5e4+411dXVnRYrIu0YMCr0HPbyr+ClX+Zmm8/eDttegitvhx59c7NNSVs6AdAAJD+qbxjQ9jdke/O0N/50YBSwxszeSIxfbWYnH0/xInKcLrwFhpwDv/4KHNiZ3W1tewWe/h6M/wSM+Uh2tyVdkk4A1AKjzWyUmVUC1wBL28yzFJiZaA00Bdjt7lvaW9bdX3T3k9x9pLuPJATFRHd/J1M7JiIpxMph+l1wcCf81zeyt52Ww/DLm8K3/mn/kr3tSLd0GgDu3gzcDDwGvAwscff1ZjbHzOYkZlsGbATqgXuAGztaNuN7ISLpO/nscIPY2sWw9j+zs43f/V94uw7+/AfQWy2885W5F04DnJqaGq+rq4u6DJHC19IMC/8ctq6H65/KbOucPz4N910Vunmcfmfm1itdZmar3L2m7XjdCSxSimLl8Jf3QlkMfnFt5noP27MZHrwOBp6hUz8FQAEgUqr6D4er58GWNfDwHIjHu7e+pgNw/wxo2gefug8qe2emTskaBYBIKTtzGlzxHXjpEfjv73R9PS3N8PDsECZ/eS8MHpe5GiVr9EQmkVJ30S3hMRHP3g6xHuFRzZbqFp52xFvg4evD/QVTbwuhIgVBASBS6sxCa52WptB5TOPe8KsgnSd2Nu6Dh64Lz/n/8Ldgijp5KSQKABEJF4OvujP0HbDiLtj6YrhfoP+I9pfZ/AI8cgNsfwWmfQ8umJ27eiUjFAAiEpSVwUe/G+4UXvYVuHMyTPoCTJwFg0aHXwrxOGx+HmrvhbUPQO9q+OyDcPrlUVcvXaAAEJGjnfcZGHUp/OZbsGIuLL8Tep0IPfvB/h2hlU9FFVxwPXzga2GaFCQFgIgcq/9w+MT88ATRVx+Fd16EQ3vCXb2nTITRV0DVgKirlG5SAIhI+04YAjXXRl2FZInuAxARKVEKABGREqUAEBEpUQoAEZESpQAQESlRCko3zbcAAAOhSURBVAARkRKlABARKVEKABGRElVQXUKa2XbgzS4uPgjYkcFyoqR9yT/Fsh+gfclX3dmXU929uu3IggqA7jCzulR9YhYi7Uv+KZb9AO1LvsrGvugUkIhIiVIAiIiUqFIKgLujLiCDtC/5p1j2A7Qv+Srj+1Iy1wBERORopfQLQEREkigARERKVEkEgJlNNbMNZlZvZrdGXU93mNkbZvaimb1gZnVR15MuM1tgZtvMbF3SuAFm9oSZvZZ4LYi+BdvZl2+Z2duJz+UFM/tolDWmw8yGm9lvzexlM1tvZn+bGF9wn0sH+1KIn0tPM3vOzNYk9uXbifEZ/1yK/hqAmcWAV4ErgAagFpjh7i9FWlgXmdkbQI27F9TNLWZ2KbAPWOTu4xPjvgvsdPfbEsF8ort/Pco609HOvnwL2Ofu34+ytuNhZkOAIe6+2sz6AquAvwA+R4F9Lh3sy6covM/FgN7uvs/MKoBngb8FPk6GP5dS+AUwGah3943u3gQsBqZHXFPJcfengZ1tRk8H7ku8v4/wDzbvtbMvBcfdt7j76sT7vcDLwFAK8HPpYF8Kjgf7EoMViT8nC59LKQTAUGBT0nADBfo/RoIDj5vZKjObHXUx3TTY3bdA+AcMnBRxPd11s5mtTZwiyvvTJsnMbCRwHrCSAv9c2uwLFODnYmYxM3sB2AY84e5Z+VxKIQAsxbhCPu91sbtPBKYBNyVOR0j05gKnA+cCW4AfRFtO+sysD/Ag8CV33xN1Pd2RYl8K8nNx9xZ3PxcYBkw2s/HZ2E4pBEADMDxpeBiwOaJaus3dNydetwEPE05xFaqtiXO3redwt0VcT5e5+9bEP9o4cA8F8rkkzjE/CPzM3R9KjC7IzyXVvhTq59LK3XcBvwOmkoXPpRQCoBYYbWajzKwSuAZYGnFNXWJmvRMXuDCz3sCfAes6XiqvLQVmJd7PAn4ZYS3d0voPM+FqCuBzSVxsnA+87O4/TJpUcJ9Le/tSoJ9LtZn1T7zvBXwYeIUsfC5F3woIINH061+BGLDA3f854pK6xMxOI3zrBygHfl4o+2Jm9wOXER5puxX4R+ARYAkwAngL+KS75/3F1Xb25TLCaQYH3gCubz1fm6/M7P3AM8CLQDwx+u8J584L6nPpYF9mUHifywTCRd4Y4Uv6Enf/jpkNJMOfS0kEgIiIHKsUTgGJiEgKCgARkRKlABARKVEKABGREqUAEBEpUQoAEZESpQAQESlR/x+dz/cwWlqBmgAAAABJRU5ErkJggg==\n" + ], + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "xs_before = np.linspace(0, lens_pos, 1000)\n", + "xs_after = np.linspace(0, 40, 1000)\n", + "plt.plot(xs, w_before(x=[xs_before]))\n", + "plt.plot(xs + lens_pos, w(s=lens_pos, x=[xs_after]))" + ] + }, + { + "cell_type": "code", + "execution_count": 44, + "metadata": { + "autoscroll": false, + "collapsed": false, + "ein.hycell": false, + "ein.tags": "worksheet-0", + "slideshow": { + "slide_type": "-" + } + }, + "outputs": [ + { + "data": { + "text/plain": [ + "0.010021086630321032" + ] + }, + "execution_count": 44, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "w0()" + ] + }, + { + "cell_type": "code", + "execution_count": 44, + "metadata": { + "autoscroll": false, + "collapsed": false, + "ein.hycell": false, + "ein.tags": "worksheet-0", + "slideshow": { + "slide_type": "-" + } + }, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "argv": [ + "python", + "-m", + "ipykernel_launcher", + "-f", + "{connection_file}" + ], + "display_name": "Python 3", + "env": null, + "interrupt_mode": "signal", + "language": "python", + "metadata": null, + "name": "python3" + }, + "name": "Untitled.ipynb" + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/interessant.org b/interessant.org new file mode 100644 index 0000000..fe3feb7 --- /dev/null +++ b/interessant.org @@ -0,0 +1,23 @@ +* IAP +** SZ Solarzelle +** OCT Opt. Koh. Tom +* IFMP +** TEM Elektronenm. +** PSL Phasenueber +* IKTP +** RE Reaktor +** DD Dosimetrie +** PET Positronen Em. Sp. +** BE Beta Zerfall +** MY Myonen +** TR Transmission th. neutr +* ZIK B Cube +** MMC Molekularmotoren + + +* Olga +** GL +** MMC +** RS +** SZ +** SO