fibre_walk_project_code/scripts/experiments/001_laplace_fft.py

86 lines
2.3 KiB
Python
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import matplotlib.pyplot as plt
import numpy as np
def fake_signal(t, amps, ωs, γs):
"""Generate a fake signal with given amplitudes, frequencies and damping factors.
:param t: time vector
:param amps: amplitudes
:param ωs: frequencies
:param γs: damping factors
"""
return np.imag(
np.sum(
amps[None, :]
* np.exp(-1j * ωs[None, :] * t[:, None] - γs[None, :] * t[:, None]),
axis=1,
)
)
def undamped_fft(t, y, γ):
fft = np.fft.rfft(y * np.exp(γ * t))
freq = np.fft.rfftfreq(len(t), t[1] - t[0])
return freq, fft
def laplace_fft(t, y, γs):
freq = np.fft.rfftfreq(len(t), t[1] - t[0])
output = np.empty((len(freq), len(γs)), dtype=complex)
for i, γ in enumerate(γs):
row = np.fft.rfft(y * np.exp(γ * t))
output[:, i] = row / np.abs(row).max()
return freq, output
# %% Interactive
def test_fake_signal():
ωs = 2 * np.pi * np.array([0.9, 1, 1.1])
γs = np.array([0.2, 0.3, 0.2])
amps = np.ones_like(ωs) # np.random.uniform(0, 1, len(ωs))
t = np.linspace(0, 2 * np.pi / max(ωs) * 100, 10000)
y = fake_signal(t, amps, ωs, γs)
y += np.random.normal(0, 1, len(t))
print(f"γs: {γs}")
print(f"ωs: {ωs / (2 * np.pi)}")
# γ_scan = np.array([0, γs[0], γs[0] * 2])
γ_scan = np.linspace(0, np.max(γs) * 1.1, 1000)
freq, fft = laplace_fft(t, y, γ_scan)
signal = np.abs(fft) ** 2
signal = np.flip(signal, axis=1)
fig, axes = plt.subplot_mosaic("AB;CC")
(ax1, ax2, ax3) = axes.values()
ax3.plot(t, y)
ax2.imshow(
signal.T,
aspect="auto",
extent=(0, max(freq), 0, max(γ_scan)),
norm="log",
interpolation=None,
)
for i, ω in enumerate(ωs):
ax2.axvline(ω / (2 * np.pi), color=f"C{i}", linestyle="--")
for i, γ in enumerate(γs):
ax2.axhline(γ, color=f"C{i}", linestyle="--")
ax2.set_xlim(0, 1.1 * max(ωs) / (2 * np.pi))
for i in range(1):
ax1.plot(freq, np.abs(fft[:, i]) ** 2, alpha=1)
for i, ω in enumerate(ωs):
ax1.axvline(
ω / (2 * np.pi), color=f"C{i}", linestyle="--", alpha=0.2, zorder=-10
)
ax1.set_xlim(0, 1.1 * max(ωs) / (2 * np.pi))
# plt.legend()