from ringfit import data import matplotlib.pyplot as plt from ringfit.data import * from ringfit.plotting import * from ringfit.fit import * from rabifun.analysis import * import numpy as np import scipy from collections import OrderedDict import networkx as nx from functools import reduce # %% load data path = "../../data/22_05_24/ringdown_try_2" scan = ScanData.from_dir(path) # %% Set Window window = (0.027751370026589985, 0.027751370026589985 + 0.00001 / 2) window = tuple( np.array([0.03075207891902308, 0.03075207891902308 + 0.00001]) + 4e-3 - 0.87e-6 ) window = tuple( np.array([0.016244684251065847, 0.016248626903395593 + 49e-5]) + 8e-3 - 12e-7 ) # %% Plot Scan gc.collect() fig = plt.figure("interactive", constrained_layout=True) fig.clf() (ax, ax2, ax_signal, ax_stft, ax_decay) = fig.subplot_mosaic("AB;CC;DE").values() ax.set_title("Fourier Spectrum") ax2.set_title("Reconstructed Spectrum") for spec_ax in [ax, ax2]: spec_ax.set_xlabel("Frequency (MHz)") spec_ax.set_ylabel("Power") ax3 = ax.twinx() ax3.set_ylabel("Phase (rad)") ax_stft.set_xlabel("Time (s)") ax_stft.set_ylabel("Frequency (Hz)") ax_stft.set_title("Short Time Fourier Transform") ax_decay.set_xlabel("Time (s)") ax_decay.set_ylabel("Power") # ax_signal.set_xlim(*window) plot_scan(scan, ax=ax_signal, smoothe_output=1e-8, linewidth=0.5) ax_signal.axvspan(*window, color="red", alpha=0.1) ax_signal.set_xlabel("Time (s)") ax_signal.set_ylabel("Signal (mV)") ax_signal.set_title("Raw Signal (Slighly Smoothened)") # %% Fourier freq, fft = fourier_transform( scan.time, scan.output, window=window, low_cutoff=0.5e6, high_cutoff=90e6 ) freq *= 1e-6 # ax.set_yscale("log") ax.plot(freq, np.abs(fft)) # ax.plot(freq, np.abs(fft.real), linewidth=1, color="red") # ax.plot(freq, fft.imag, linewidth=1, color="green") ax3.plot( freq[1:], np.cumsum(np.angle(fft[1:] / fft[:-1])), linestyle="--", alpha=0.5, linewidth=0.5, zorder=10, ) freq_step = freq[1] - freq[0] Ω_guess = 13 δ_guess = 2.6 peaks, peak_info = scipy.signal.find_peaks( np.abs(fft) ** 2, distance=δ_guess / 2 / freq_step, prominence=1e-8 ) peak_freq = freq[peaks] anglegrad = np.gradient(np.unwrap(np.angle(fft) + np.pi, period=2 * np.pi)) neg_peaks = peaks[anglegrad[peaks] < 0] pos_peaks = peaks[anglegrad[peaks] > 0] phase_detuning = np.angle(fft[peaks]) ax.plot(peak_freq, np.abs(fft[peaks]), "*") def extract_peak(index, width, sign, detuning): begin = max(index - width, 0) return sign * (freq[begin : index + width]) + detuning, np.abs( fft[begin : index + width] ) mode_freqs = freq[peaks] all_diffs = np.abs((mode_freqs[:, None] - mode_freqs[None, :])[:, :, None] - Ω_guess) all_diffs[all_diffs == 0] = np.inf all_diffs[all_diffs > 1] = np.inf matches = np.asarray(all_diffs < np.inf).nonzero() pairs = np.array(list(zip(*matches, all_diffs[matches])), dtype=int) relationships = nx.DiGraph() for node, peak in enumerate(peaks): relationships.add_node(node, freqency=freq[peak]) for left, right, relationship, diff in pairs: if freq[left] > freq[right]: left, right = right, left if ( not relationships.has_edge(left, right) or relationships[left][right]["weight"] > diff * 1e-6 ): relationships.add_edge( left, right, weight=diff * 1e-6, type=relationship, freqdis=right - left ) UG = relationships.to_undirected() # extract subgraphs neg, pos, *unmatched = [ list(sorted(i)) for i in sorted(list(nx.connected_components(UG)), key=lambda l: -len(l)) ] ax.plot(mode_freqs[neg], np.abs(fft[peaks[neg]]), "x") ax.plot(mode_freqs[pos], np.abs(fft[peaks[pos]]), "o") # ax.plot(freq[pos_peaks], np.abs(fft[pos_peaks]), "o") Ω = (np.diff(peak_freq[neg]).mean() + np.diff(peak_freq[pos]).mean()) / 2 ΔΩ = np.sqrt((np.diff(peak_freq[neg]).var() + np.diff(peak_freq[pos]).var())) / 2 Δ_L = ((mode_freqs[pos] - mode_freqs[neg] - Ω) / 2).mean() ax2.cla() for peak in neg: ax2.plot(*extract_peak(peaks[peak], 200, 1, Δ_L + Ω / 2), color="blue") for peak in pos: ax2.plot(*extract_peak(peaks[peak], 200, -1, Δ_L - Ω / 2), color="blue") hybrid = [] for peak, sign in zip(np.array(unmatched).flatten(), [1, -1]): hybrid.append(sign * mode_freqs[peak] + Δ_L) ax2.plot(*extract_peak(peaks[peak], 200, sign, Δ_L), color="green") δ = np.abs(np.diff(hybrid)[0] / 2) fig.suptitle(f"Ω = {Ω:.2f}MHz, ΔΩ = {ΔΩ:.2f}MHz, Δ_L = {Δ_L:.2f}MHz, δ = {δ:.2f}MHz") # %% Windowed Fourier windows = np.linspace(window[0], window[0] + (window[-1] - window[0]) * 0.1, 100) fiducial = peak_freq[neg[1]] size = int(300 * 1e-6 / fiducial / scan.timestep) w_fun = scipy.signal.windows.gaussian(size, std=0.1 * size, sym=True) # w_fun = scipy.signal.windows.boxcar(size) amps = [] SFT = scipy.signal.ShortTimeFFT( w_fun, hop=int(size * 0.1 / 5), fs=1 / scan.timestep, scale_to="magnitude" ) t = scan.time[(window[1] > scan.time) & (scan.time > window[0])] ft = SFT.spectrogram(scan.output[(window[1] > scan.time) & (scan.time > window[0])]) ft[ft > 1e-2] = 0 ax_stft.imshow( np.log((ft[:, :400])), aspect="auto", origin="lower", cmap="magma", extent=SFT.extent(len(t)), ) ax_stft.set_ylim(0, 50 * 1e6) ax_stft.set_xlim( 2.8 * SFT.lower_border_end[0] * SFT.T, SFT.upper_border_begin(len(t))[0] * SFT.T ) # %% Decay Plot index = np.argmin(np.abs(SFT.f - 1e6 * peak_freq[unmatched[0]])) + 1 ax_stft.axhline(SFT.f[index]) hy_mode = np.mean(ft[index - 3 : index + 3, :], axis=0) sft_t = SFT.t(len(t)) mask = (sft_t > 1 * SFT.lower_border_end[0] * SFT.T) & (sft_t < np.max(sft_t) * 0.1) hy_mode = hy_mode[mask] sft_t = sft_t[mask] ax_decay.plot(sft_t, hy_mode) ax_decay.set_xscale("log") # plt.plot(sft_t, 3e-6 * np.exp(-.9e6 * (sft_t - 3*SFT.lower_border_end[0] * SFT.T))) def model(t, a, τ): return a * np.exp(-τ * (t - SFT.lower_border_end[0] * SFT.T)) p, cov = scipy.optimize.curve_fit(model, sft_t, hy_mode, p0=[hy_mode[0], 1e6]) ax_decay.plot(sft_t, model(sft_t, *p)) print(p[1] * 1e-6, np.sqrt(np.diag(cov))[1] * 1e-6) ax_decay.set_title(f"A Site decay γ = {p[1] * 1e-6:.2f}MHz") fig.savefig("/tmp/screen.png", dpi=500)