mirror of
https://github.com/vale981/fibre_walk_project_code
synced 2025-03-04 09:21:38 -05:00
fool around with the decay stuff
This commit is contained in:
parent
580753cb12
commit
b7060a7d26
1 changed files with 14 additions and 13 deletions
|
@ -24,7 +24,7 @@ def self_energy(ω, g, ε):
|
|||
def coefficients(ω, g, ε):
|
||||
coeff = 1 / (1 + self_energy(ω, g, ε))
|
||||
|
||||
return coeff / np.sum((coeff))
|
||||
return coeff
|
||||
|
||||
|
||||
def characteristic_poly(g: np.ndarray, ε: np.ndarray, η_A: float = 0):
|
||||
|
@ -82,9 +82,10 @@ def make_params(ω_c=0.1 / 2, N=10, gbar=1 / 3):
|
|||
|
||||
|
||||
def test():
|
||||
params = make_params(N=20, gbar=1 / 4)
|
||||
params = make_params(N=30, gbar=1 / 4)
|
||||
params.flat_energies = False
|
||||
params.α = 0
|
||||
params.α = 2
|
||||
params.η = 0
|
||||
|
||||
params.correct_lamb_shift = 1
|
||||
runtime = RuntimeParams(params)
|
||||
|
@ -94,33 +95,33 @@ def test():
|
|||
|
||||
H = hamiltonian(g, ε.real, ε_A=runtime.a_shift, η_A=0 * params.η / 2)
|
||||
|
||||
print(runtime.a_shift - ε[-1])
|
||||
eig = np.linalg.eig(H)
|
||||
|
||||
ω = eig.eigenvalues
|
||||
ω = np.linalg.eigvalsh(H)
|
||||
|
||||
idx = np.argsort(ω.real)
|
||||
ω = ω[idx]
|
||||
|
||||
M = np.linalg.eig(H).eigenvectors[:, idx]
|
||||
# M = np.linalg.eig(H).eigenvectors[:, idx]
|
||||
|
||||
Minv = np.linalg.inv(M)
|
||||
# Minv = np.linalg.inv(M)
|
||||
|
||||
coeff = M[0, :] * Minv[:, 0]
|
||||
# coeff = M[0, :] * Minv[:, 0]
|
||||
# coeff = coeff[idx]
|
||||
coeff = coefficients(ω, g, ε.real)
|
||||
|
||||
f = make_figure()
|
||||
|
||||
U_A = np.abs(1 / (1 + np.sum((g / (ω[0] - ε.real)) ** 2))) ** 2
|
||||
U_A_coeff = np.max(np.abs(coeff**2))
|
||||
print(np.argmax(np.abs(coeff**2)))
|
||||
print(coeff)
|
||||
ax_t, ax_e = f.subplots(1, 2)
|
||||
ax_t.plot(t, a_site_population(t, ω, coeff, 0))
|
||||
# ax_t.plot(t, U_A_coeff + .1 * np.sin(ω[0].real * t))
|
||||
ax_t.set_ylim(0, 1.01)
|
||||
# ax_t.set_ylim(0, 1.01)
|
||||
ax_t.set_xlabel("Time [1/Ω]")
|
||||
ax_t.set_ylabel(r"$ρ_A$")
|
||||
|
||||
ax_t.plot(t, np.exp(-np.sum(g**2) * t))
|
||||
# ax_t.set_xscale("log")
|
||||
|
||||
# print((np.abs(1 / (1 + np.sum((g / ε) ** 2)))))
|
||||
ax_t.axhline(U_A, color="green", linestyle="-.")
|
||||
print(U_A)
|
||||
|
|
Loading…
Add table
Reference in a new issue