diff --git a/scripts/ringdown_spectrum_analysis/001_first_exploration.py b/scripts/ringdown_spectrum_analysis/001_first_exploration.py new file mode 100644 index 0000000..23c9d6e --- /dev/null +++ b/scripts/ringdown_spectrum_analysis/001_first_exploration.py @@ -0,0 +1,214 @@ +from ringfit import data +import matplotlib.pyplot as plt +from ringfit.data import * +from ringfit.plotting import * +from ringfit.fit import * +from rabifun.analysis import * +import numpy as np +import scipy +from collections import OrderedDict +import networkx as nx +from functools import reduce + +# %% load data +path = "../../data/22_05_24/ringdown_try_2" +scan = ScanData.from_dir(path) + + +# %% Set Window +window = (0.027751370026589985, 0.027751370026589985 + 0.00001 / 2) +window = tuple( + np.array([0.03075207891902308, 0.03075207891902308 + 0.00001]) + 4e-3 - 0.87e-6 +) + +window = tuple( + np.array([0.016244684251065847, 0.016248626903395593 + 49e-5]) + 8e-3 - 12e-7 +) + + +# %% Plot Scan +gc.collect() +fig = plt.figure("interactive", constrained_layout=True, figsize=(20, 3 * 5)) +fig.clf() +(ax, ax2, ax_signal, ax_stft, ax_decay) = fig.subplot_mosaic("AB;CC;DE").values() +ax.set_title("Fourier Spectrum") +ax2.set_title("Reconstructed Spectrum") +for spec_ax in [ax, ax2]: + spec_ax.set_xlabel("Frequency (MHz)") + spec_ax.set_ylabel("Power") +ax3 = ax.twinx() +ax3.set_ylabel("Phase (rad)") + +ax_stft.set_xlabel("Time (s)") +ax_stft.set_ylabel("Frequency (Hz)") +ax_stft.set_title("Short Time Fourier Transform") +ax_decay.set_xlabel("Time (s)") +ax_decay.set_ylabel("Power") + +# ax_signal.set_xlim(*window) +plot_scan(scan, ax=ax_signal, smoothe_output=1e-8, linewidth=0.5) +ax_signal.axvspan(*window, color="red", alpha=0.1) +ax_signal.set_xlabel("Time (s)") +ax_signal.set_ylabel("Signal (mV)") +ax_signal.set_title("Raw Signal (Slighly Smoothened)") + +# %% Fourier +freq, fft = fourier_transform( + scan.time, scan.output, window=window, low_cutoff=0.5e6, high_cutoff=90e6 +) + +freq *= 1e-6 + +# ax.set_yscale("log") +ax.plot(freq, np.abs(fft)) +# ax.plot(freq, np.abs(fft.real), linewidth=1, color="red") +# ax.plot(freq, fft.imag, linewidth=1, color="green") + +ax3.plot( + freq[1:], + np.cumsum(np.angle(fft[1:] / fft[:-1])), + linestyle="--", + alpha=0.5, + linewidth=0.5, + zorder=10, +) + +freq_step = freq[1] - freq[0] +Ω_guess = 13 +δ_guess = 2.6 + +peaks, peak_info = scipy.signal.find_peaks( + np.abs(fft) ** 2, distance=δ_guess / 2 / freq_step, prominence=1e-8 +) + +peak_freq = freq[peaks] +anglegrad = np.gradient(np.unwrap(np.angle(fft) + np.pi, period=2 * np.pi)) +neg_peaks = peaks[anglegrad[peaks] < 0] +pos_peaks = peaks[anglegrad[peaks] > 0] +phase_detuning = np.angle(fft[peaks]) + +ax.plot(peak_freq, np.abs(fft[peaks]), "*") + + +def extract_peak(index, width, sign, detuning): + begin = max(index - width, 0) + return sign * (freq[begin : index + width]) + detuning, np.abs( + fft[begin : index + width] + ) + + +mode_freqs = freq[peaks] + +all_diffs = np.abs((mode_freqs[:, None] - mode_freqs[None, :])[:, :, None] - Ω_guess) + +all_diffs[all_diffs == 0] = np.inf +all_diffs[all_diffs > 1] = np.inf +matches = np.asarray(all_diffs < np.inf).nonzero() + +pairs = np.array(list(zip(*matches, all_diffs[matches])), dtype=int) + +relationships = nx.DiGraph() +for node, peak in enumerate(peaks): + relationships.add_node(node, freqency=freq[peak]) + +for left, right, relationship, diff in pairs: + if freq[left] > freq[right]: + left, right = right, left + + if ( + not relationships.has_edge(left, right) + or relationships[left][right]["weight"] > diff * 1e-6 + ): + relationships.add_edge( + left, right, weight=diff * 1e-6, type=relationship, freqdis=right - left + ) + + +UG = relationships.to_undirected() + +# extract subgraphs +neg, pos, *unmatched = [ + list(sorted(i)) + for i in sorted(list(nx.connected_components(UG)), key=lambda l: -len(l)) +] + +ax.plot(mode_freqs[neg], np.abs(fft[peaks[neg]]), "x") +ax.plot(mode_freqs[pos], np.abs(fft[peaks[pos]]), "o") + +# ax.plot(freq[pos_peaks], np.abs(fft[pos_peaks]), "o") + +Ω = (np.diff(peak_freq[neg]).mean() + np.diff(peak_freq[pos]).mean()) / 2 +ΔΩ = np.sqrt((np.diff(peak_freq[neg]).var() + np.diff(peak_freq[pos]).var())) / 2 + + +Δ_L = ((mode_freqs[pos] - mode_freqs[neg] - Ω) / 2).mean() + + +ax2.cla() +for peak in neg: + ax2.plot(*extract_peak(peaks[peak], 200, 1, Δ_L + Ω / 2), color="blue") +for peak in pos: + ax2.plot(*extract_peak(peaks[peak], 200, -1, Δ_L - Ω / 2), color="blue") + +hybrid = [] +for peak, sign in zip(np.array(unmatched).flatten(), [1, -1]): + hybrid.append(sign * mode_freqs[peak] + Δ_L) + ax2.plot(*extract_peak(peaks[peak], 200, sign, Δ_L), color="green") + +δ = np.abs(np.diff(hybrid)[0] / 2) + +fig.suptitle(f"Ω = {Ω:.2f}MHz, ΔΩ = {ΔΩ:.2f}MHz, Δ_L = {Δ_L:.2f}MHz, δ = {δ:.2f}MHz") + +# %% Windowed Fourier +windows = np.linspace(window[0], window[0] + (window[-1] - window[0]) * 0.1, 100) +fiducial = peak_freq[neg[1]] +size = int(300 * 1e-6 / fiducial / scan.timestep) +w_fun = scipy.signal.windows.gaussian(size, std=0.1 * size, sym=True) +# w_fun = scipy.signal.windows.boxcar(size) +amps = [] +SFT = scipy.signal.ShortTimeFFT( + w_fun, hop=int(size * 0.1 / 5), fs=1 / scan.timestep, scale_to="magnitude" +) + +t = scan.time[(window[1] > scan.time) & (scan.time > window[0])] +ft = SFT.spectrogram(scan.output[(window[1] > scan.time) & (scan.time > window[0])]) +ft[ft > 1e-2] = 0 +ax_stft.imshow( + np.log((ft[:, :400])), + aspect="auto", + origin="lower", + cmap="magma", + extent=SFT.extent(len(t)), +) +ax_stft.set_ylim(0, 50 * 1e6) +ax_stft.set_xlim( + 2.8 * SFT.lower_border_end[0] * SFT.T, SFT.upper_border_begin(len(t))[0] * SFT.T +) + +# %% Decay Plot +index = np.argmin(np.abs(SFT.f - 1e6 * peak_freq[unmatched[0]])) + 1 +ax_stft.axhline(SFT.f[index]) + +hy_mode = np.mean(ft[index - 3 : index + 3, :], axis=0) +sft_t = SFT.t(len(t)) + +mask = (sft_t > 1 * SFT.lower_border_end[0] * SFT.T) & (sft_t < np.max(sft_t) * 0.1) +hy_mode = hy_mode[mask] +sft_t = sft_t[mask] + +ax_decay.plot(sft_t, hy_mode) +ax_decay.set_xscale("log") +# plt.plot(sft_t, 3e-6 * np.exp(-.9e6 * (sft_t - 3*SFT.lower_border_end[0] * SFT.T))) + + +def model(t, a, τ): + return a * np.exp(-τ * (t - SFT.lower_border_end[0] * SFT.T)) + + +p, cov = scipy.optimize.curve_fit(model, sft_t, hy_mode, p0=[hy_mode[0], 1e6]) +ax_decay.plot(sft_t, model(sft_t, *p)) +print(p[1] * 1e-6, np.sqrt(np.diag(cov))[1] * 1e-6) +ax_decay.set_title(f"A Site decay γ = {p[1] * 1e-6:.2f}MHz") +ax_decay.set_yscale("log") + +save_figure(fig, "001_overview") diff --git a/scripts/ringdown_spectrum_analysis/figs/001_overview.pdf b/scripts/ringdown_spectrum_analysis/figs/001_overview.pdf new file mode 100644 index 0000000..44d4a2a Binary files /dev/null and b/scripts/ringdown_spectrum_analysis/figs/001_overview.pdf differ diff --git a/scripts/ringdown_spectrum_analysis/figs/001_overview.png b/scripts/ringdown_spectrum_analysis/figs/001_overview.png new file mode 100644 index 0000000..b82e0b7 Binary files /dev/null and b/scripts/ringdown_spectrum_analysis/figs/001_overview.png differ diff --git a/scripts/ringdown_spectrum_analysis/figs/001_overview.yaml b/scripts/ringdown_spectrum_analysis/figs/001_overview.yaml new file mode 100644 index 0000000..a769141 --- /dev/null +++ b/scripts/ringdown_spectrum_analysis/figs/001_overview.yaml @@ -0,0 +1,5 @@ +change_id: vulxxmykrqmzvlstztzyprlrqnyvzmzz +commit_id: 4ddaa4118e76e984623f45150d5967ee6029b247 +description: clean up analysis +name: 001_overview +source: scripts/ringdown_spectrum_analysis/001_first_exploration.py