mirror of
https://github.com/vale981/emacs-ipython-notebook
synced 2025-03-09 11:56:38 -04:00
523 lines
256 KiB
Text
523 lines
256 KiB
Text
![]() |
{
|
||
|
"cells": [
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"metadata": {},
|
||
|
"source": [
|
||
|
"# Third Party Libraries With Rich Output"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"metadata": {},
|
||
|
"source": [
|
||
|
"A number of third party libraries defined their own custom display logic. This gives their objcts rich output by default when used in the Notebook."
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 7,
|
||
|
"metadata": {
|
||
|
"collapsed": false
|
||
|
},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"from IPython.display import display"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"metadata": {},
|
||
|
"source": [
|
||
|
"## Pandas"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"metadata": {},
|
||
|
"source": [
|
||
|
"[Pandas](http://pandas.pydata.org/) is a data analysis library for Python. Its `DataFrame` objects have an HTML table representation in the Notebook."
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 9,
|
||
|
"metadata": {
|
||
|
"collapsed": false
|
||
|
},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"import pandas"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"metadata": {},
|
||
|
"source": [
|
||
|
"Here is a small amount of stock data for APPL:"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 10,
|
||
|
"metadata": {
|
||
|
"collapsed": false
|
||
|
},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"name": "stdout",
|
||
|
"output_type": "stream",
|
||
|
"text": [
|
||
|
"Writing data.csv\n"
|
||
|
]
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"%%writefile data.csv\n",
|
||
|
"Date,Open,High,Low,Close,Volume,Adj Close\n",
|
||
|
"2012-06-01,569.16,590.00,548.50,584.00,14077000,581.50\n",
|
||
|
"2012-05-01,584.90,596.76,522.18,577.73,18827900,575.26\n",
|
||
|
"2012-04-02,601.83,644.00,555.00,583.98,28759100,581.48\n",
|
||
|
"2012-03-01,548.17,621.45,516.22,599.55,26486000,596.99\n",
|
||
|
"2012-02-01,458.41,547.61,453.98,542.44,22001000,540.12\n",
|
||
|
"2012-01-03,409.40,458.24,409.00,456.48,12949100,454.53"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"metadata": {},
|
||
|
"source": [
|
||
|
"Read this as into a `DataFrame`:"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 11,
|
||
|
"metadata": {
|
||
|
"collapsed": false
|
||
|
},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"df = pandas.read_csv('data.csv')"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"metadata": {},
|
||
|
"source": [
|
||
|
"And view the HTML representation:"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 12,
|
||
|
"metadata": {
|
||
|
"collapsed": false
|
||
|
},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"data": {
|
||
|
"text/html": [
|
||
|
"<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n",
|
||
|
"<table border=\"1\" class=\"dataframe\">\n",
|
||
|
" <thead>\n",
|
||
|
" <tr style=\"text-align: right;\">\n",
|
||
|
" <th></th>\n",
|
||
|
" <th>Date</th>\n",
|
||
|
" <th>Open</th>\n",
|
||
|
" <th>High</th>\n",
|
||
|
" <th>Low</th>\n",
|
||
|
" <th>Close</th>\n",
|
||
|
" <th>Volume</th>\n",
|
||
|
" <th>Adj Close</th>\n",
|
||
|
" </tr>\n",
|
||
|
" </thead>\n",
|
||
|
" <tbody>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>0</th>\n",
|
||
|
" <td> 2012-06-01</td>\n",
|
||
|
" <td> 569.16</td>\n",
|
||
|
" <td> 590.00</td>\n",
|
||
|
" <td> 548.50</td>\n",
|
||
|
" <td> 584.00</td>\n",
|
||
|
" <td> 14077000</td>\n",
|
||
|
" <td> 581.50</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>1</th>\n",
|
||
|
" <td> 2012-05-01</td>\n",
|
||
|
" <td> 584.90</td>\n",
|
||
|
" <td> 596.76</td>\n",
|
||
|
" <td> 522.18</td>\n",
|
||
|
" <td> 577.73</td>\n",
|
||
|
" <td> 18827900</td>\n",
|
||
|
" <td> 575.26</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>2</th>\n",
|
||
|
" <td> 2012-04-02</td>\n",
|
||
|
" <td> 601.83</td>\n",
|
||
|
" <td> 644.00</td>\n",
|
||
|
" <td> 555.00</td>\n",
|
||
|
" <td> 583.98</td>\n",
|
||
|
" <td> 28759100</td>\n",
|
||
|
" <td> 581.48</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>3</th>\n",
|
||
|
" <td> 2012-03-01</td>\n",
|
||
|
" <td> 548.17</td>\n",
|
||
|
" <td> 621.45</td>\n",
|
||
|
" <td> 516.22</td>\n",
|
||
|
" <td> 599.55</td>\n",
|
||
|
" <td> 26486000</td>\n",
|
||
|
" <td> 596.99</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>4</th>\n",
|
||
|
" <td> 2012-02-01</td>\n",
|
||
|
" <td> 458.41</td>\n",
|
||
|
" <td> 547.61</td>\n",
|
||
|
" <td> 453.98</td>\n",
|
||
|
" <td> 542.44</td>\n",
|
||
|
" <td> 22001000</td>\n",
|
||
|
" <td> 540.12</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>5</th>\n",
|
||
|
" <td> 2012-01-03</td>\n",
|
||
|
" <td> 409.40</td>\n",
|
||
|
" <td> 458.24</td>\n",
|
||
|
" <td> 409.00</td>\n",
|
||
|
" <td> 456.48</td>\n",
|
||
|
" <td> 12949100</td>\n",
|
||
|
" <td> 454.53</td>\n",
|
||
|
" </tr>\n",
|
||
|
" </tbody>\n",
|
||
|
"</table>\n",
|
||
|
"<p>6 rows \u00d7 7 columns</p>\n",
|
||
|
"</div>"
|
||
|
],
|
||
|
"text/plain": [
|
||
|
" Date Open High Low Close Volume Adj Close\n",
|
||
|
"0 2012-06-01 569.16 590.00 548.50 584.00 14077000 581.50\n",
|
||
|
"1 2012-05-01 584.90 596.76 522.18 577.73 18827900 575.26\n",
|
||
|
"2 2012-04-02 601.83 644.00 555.00 583.98 28759100 581.48\n",
|
||
|
"3 2012-03-01 548.17 621.45 516.22 599.55 26486000 596.99\n",
|
||
|
"4 2012-02-01 458.41 547.61 453.98 542.44 22001000 540.12\n",
|
||
|
"5 2012-01-03 409.40 458.24 409.00 456.48 12949100 454.53\n",
|
||
|
"\n",
|
||
|
"[6 rows x 7 columns]"
|
||
|
]
|
||
|
},
|
||
|
"execution_count": 12,
|
||
|
"metadata": {},
|
||
|
"output_type": "execute_result"
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"df"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"metadata": {},
|
||
|
"source": [
|
||
|
"## SymPy"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"metadata": {},
|
||
|
"source": [
|
||
|
"[SymPy](http://sympy.org/) is a symbolic computing library for Python. Its equation objects have LaTeX representations that are rendered in the Notebook."
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 13,
|
||
|
"metadata": {
|
||
|
"collapsed": false
|
||
|
},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"from sympy.interactive.printing import init_printing\n",
|
||
|
"init_printing(use_latex='mathjax')"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 14,
|
||
|
"metadata": {
|
||
|
"collapsed": false
|
||
|
},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"from __future__ import division\n",
|
||
|
"import sympy as sym\n",
|
||
|
"from sympy import *\n",
|
||
|
"x, y, z = symbols(\"x y z\")\n",
|
||
|
"k, m, n = symbols(\"k m n\", integer=True)\n",
|
||
|
"f, g, h = map(Function, 'fgh')"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 15,
|
||
|
"metadata": {
|
||
|
"collapsed": false
|
||
|
},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"data": {
|
||
|
"text/latex": [
|
||
|
"$$\\frac{3 \\pi}{2} + \\frac{e^{i x}}{x^{2} + y}$$"
|
||
|
],
|
||
|
"text/plain": [
|
||
|
" \u2148\u22c5x \n",
|
||
|
"3\u22c5\u03c0 \u212f \n",
|
||
|
"\u2500\u2500\u2500 + \u2500\u2500\u2500\u2500\u2500\u2500\n",
|
||
|
" 2 2 \n",
|
||
|
" x + y"
|
||
|
]
|
||
|
},
|
||
|
"execution_count": 15,
|
||
|
"metadata": {},
|
||
|
"output_type": "execute_result"
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"Rational(3,2)*pi + exp(I*x) / (x**2 + y)"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 16,
|
||
|
"metadata": {
|
||
|
"collapsed": false
|
||
|
},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"data": {
|
||
|
"text/latex": [
|
||
|
"$$\\frac{1}{x} \\left(x \\sin{\\left (x \\right )} - 1\\right) + \\frac{1}{x}$$"
|
||
|
],
|
||
|
"text/plain": [
|
||
|
"x\u22c5sin(x) - 1 1\n",
|
||
|
"\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500 + \u2500\n",
|
||
|
" x x"
|
||
|
]
|
||
|
},
|
||
|
"execution_count": 16,
|
||
|
"metadata": {},
|
||
|
"output_type": "execute_result"
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"a = 1/x + (x*sin(x) - 1)/x\n",
|
||
|
"a"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 17,
|
||
|
"metadata": {
|
||
|
"collapsed": false
|
||
|
},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"data": {
|
||
|
"text/latex": [
|
||
|
"$$1 + \\frac{x^{2}}{2} + \\frac{5 x^{4}}{24} + \\mathcal{O}\\left(x^{6}\\right)$$"
|
||
|
],
|
||
|
"text/plain": [
|
||
|
" 2 4 \n",
|
||
|
" x 5\u22c5x \u239b 6\u239e\n",
|
||
|
"1 + \u2500\u2500 + \u2500\u2500\u2500\u2500 + O\u239dx \u23a0\n",
|
||
|
" 2 24 "
|
||
|
]
|
||
|
},
|
||
|
"execution_count": 17,
|
||
|
"metadata": {},
|
||
|
"output_type": "execute_result"
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"(1/cos(x)).series(x, 0, 6)"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"metadata": {},
|
||
|
"source": [
|
||
|
"## Vincent"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"metadata": {},
|
||
|
"source": [
|
||
|
"[Vincent](https://vincent.readthedocs.org/en/latest/) is a visualization library that uses the [Vega](http://trifacta.github.io/vega/) visualization grammar to build [d3.js](http://d3js.org/) based visualizations in the Notebook and on http://nbviewer.ipython.org. `Visualization` objects in Vincetn have rich HTML and JavaSrcript representations."
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 1,
|
||
|
"metadata": {
|
||
|
"collapsed": false
|
||
|
},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"import vincent\n",
|
||
|
"import pandas as pd"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 5,
|
||
|
"metadata": {
|
||
|
"collapsed": false
|
||
|
},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"import pandas.io.data as web\n",
|
||
|
"import datetime\n",
|
||
|
"all_data = {}\n",
|
||
|
"date_start = datetime.datetime(2010, 1, 1)\n",
|
||
|
"date_end = datetime.datetime(2014, 1, 1)\n",
|
||
|
"for ticker in ['AAPL', 'IBM', 'YHOO', 'MSFT']:\n",
|
||
|
" all_data[ticker] = web.DataReader(ticker, 'yahoo', date_start, date_end)\n",
|
||
|
"price = pd.DataFrame({tic: data['Adj Close']\n",
|
||
|
" for tic, data in all_data.items()})"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 8,
|
||
|
"metadata": {
|
||
|
"collapsed": false
|
||
|
},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"data": {
|
||
|
"text/html": [
|
||
|
"\n",
|
||
|
" <script>\n",
|
||
|
" \n",
|
||
|
" function vct_load_lib(url, callback){\n",
|
||
|
" if(typeof d3 !== 'undefined' &&\n",
|
||
|
" url === 'http://d3js.org/d3.v3.min.js'){\n",
|
||
|
" callback()\n",
|
||
|
" }\n",
|
||
|
" var s = document.createElement('script');\n",
|
||
|
" s.src = url;\n",
|
||
|
" s.async = true;\n",
|
||
|
" s.onreadystatechange = s.onload = callback;\n",
|
||
|
" s.onerror = function(){\n",
|
||
|
" console.warn(\"failed to load library \" + url);\n",
|
||
|
" };\n",
|
||
|
" document.getElementsByTagName(\"head\")[0].appendChild(s);\n",
|
||
|
" };\n",
|
||
|
" var vincent_event = new CustomEvent(\n",
|
||
|
" \"vincent_libs_loaded\",\n",
|
||
|
" {bubbles: true, cancelable: true}\n",
|
||
|
" );\n",
|
||
|
" \n",
|
||
|
" function load_all_libs(){\n",
|
||
|
" console.log('loading all libs')\n",
|
||
|
" vct_load_lib('http://d3js.org/d3.v3.min.js', function(){\n",
|
||
|
" vct_load_lib('http://d3js.org/d3.geo.projection.v0.min.js', function(){\n",
|
||
|
" vct_load_lib('http://wrobstory.github.io/d3-cloud/d3.layout.cloud.js', function(){\n",
|
||
|
" vct_load_lib('http://trifacta.github.com/vega/vega.js', function(){\n",
|
||
|
" window.dispatchEvent(vincent_event);\n",
|
||
|
" });\n",
|
||
|
" });\n",
|
||
|
" });\n",
|
||
|
" });\n",
|
||
|
" };\n",
|
||
|
" if(typeof define === \"function\" && define.amd){\n",
|
||
|
" if (window['d3'] === undefined ||\n",
|
||
|
" window['topojson'] === undefined){\n",
|
||
|
" require.config(\n",
|
||
|
" {paths: {\n",
|
||
|
" d3: 'http://d3js.org/d3.v3.min',\n",
|
||
|
" topojson: 'http://d3js.org/topojson.v1.min'\n",
|
||
|
" }\n",
|
||
|
" }\n",
|
||
|
" );\n",
|
||
|
" require([\"d3\"], function(d3){\n",
|
||
|
" console.log('Loading from require.js...')\n",
|
||
|
" window.d3 = d3;\n",
|
||
|
" require([\"topojson\"], function(topojson){\n",
|
||
|
" window.topojson = topojson;\n",
|
||
|
" load_all_libs();\n",
|
||
|
" });\n",
|
||
|
" });\n",
|
||
|
" };\n",
|
||
|
" }else{\n",
|
||
|
" console.log('Require.js not found, loading manually...')\n",
|
||
|
" load_all_libs();\n",
|
||
|
" };\n",
|
||
|
"\n",
|
||
|
" </script>"
|
||
|
],
|
||
|
"text/plain": [
|
||
|
"<IPython.core.display.HTML object>"
|
||
|
]
|
||
|
},
|
||
|
"metadata": {},
|
||
|
"output_type": "display_data"
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"vincent.initialize_notebook()"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 10,
|
||
|
"metadata": {
|
||
|
"collapsed": false
|
||
|
},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"data": {
|
||
|
"text/html": [
|
||
|
"<div id=\"vis47fdfca404f24684b44753131b44ed27\"></div>\n",
|
||
|
"<script>\n",
|
||
|
" ( function() {\n",
|
||
|
" var _do_plot = function() {\n",
|
||
|
" if (typeof vg === 'undefined') {\n",
|
||
|
" window.addEventListener('vincent_libs_loaded', _do_plot)\n",
|
||
|
" return;\n",
|
||
|
" }\n",
|
||
|
" vg.parse.spec({\"axes\": [{\"scale\": \"x\", \"title\": \"Date\", \"type\": \"x\"}, {\"scale\": \"y\", \"title\": \"Price\", \"type\": \"y\"}], \"data\": [{\"name\": \"table\", \"values\": [{\"col\": \"AAPL\", \"idx\": 1262592000000, \"val\": 205.7}, {\"col\": \"IBM\", \"idx\": 1262592000000, \"val\": 122.62}, {\"col\": \"YHOO\", \"idx\": 1262592000000, \"val\": 17.1}, {\"col\": \"MSFT\", \"idx\": 1262592000000, \"val\": 27.67}, {\"col\": \"AAPL\", \"idx\": 1262678400000, \"val\": 206.05}, {\"col\": \"IBM\", \"idx\": 1262678400000, \"val\": 121.14}, {\"col\": \"YHOO\", \"idx\": 1262678400000, \"val\": 17.23}, {\"col\": \"MSFT\", \"idx\": 1262678400000, \"val\": 27.68}, {\"col\": \"AAPL\", \"idx\": 1262764800000, \"val\": 202.77}, {\"col\": \"IBM\", \"idx\": 1262764800000, \"val\": 120.35}, {\"col\": \"YHOO\", \"idx\": 1262764800000, \"val\": 17.17}, {\"col\": \"MSFT\", \"idx\": 1262764800000, \"val\": 27.51}, {\"col\": \"AAPL\", \"idx\": 1262851200000, \"val\": 202.4}, {\"col\": \"IBM\", \"idx\": 1262851200000, \"val\": 119.94}, {\"col\": \"YHOO\", \"idx\": 1262851200000, \"val\": 16.7}, {\"col\": \"MSFT\", \"idx\": 1262851200000, \"val\": 27.22}, {\"col\": \"AAPL\", \"idx\": 1262937600000, \"val\": 203.75}, {\"col\": \"IBM\", \"idx\": 1262937600000, \"val\": 121.14}, {\"col\": \"YHOO\", \"idx\": 1262937600000, \"val\": 16.7}, {\"col\": \"MSFT\", \"idx\": 1262937600000, \"val\": 27.41}, {\"col\": \"AAPL\", \"idx\": 1263196800000, \"val\": 201.95}, {\"col\": \"IBM\", \"idx\": 1263196800000, \"val\": 119.87}, {\"col\": \"YHOO\", \"idx\": 1263196800000, \"val\": 16.74}, {\"col\": \"MSFT\", \"idx\": 1263196800000, \"val\": 27.06}, {\"col\": \"AAPL\", \"idx\": 1263283200000, \"val\": 199.65}, {\"col\": \"IBM\", \"idx\": 1263283200000, \"val\": 120.83}, {\"col\": \"YHOO\", \"idx\": 1263283200000, \"val\": 16.68}, {\"col\": \"MSFT\", \"idx\": 1263283200000, \"val\": 26.88}, {\"col\": \"AAPL\", \"idx\": 1263369600000, \"val\": 202.47}, {\"col\": \"IBM\", \"idx\": 1263369600000, \"val\": 120.57}, {\"col\": \"YHOO\", \"idx\": 1263369600000, \"val\": 16.9}, {\"col\": \"MSFT\", \"idx\": 1263369600000, \"val\": 27.13}, {\"col\": \"AAPL\", \"idx\": 1263456000000, \"val\": 201.29}, {\"col\": \"IBM\", \"idx\": 1263456000000, \"val\": 122.49}, {\"col\": \"YHOO\", \"idx\": 1263456000000, \"val\": 17.12}, {\"col\": \"MSFT\", \"idx\": 1263456000000, \"val\": 27.68}, {\"col\": \"AAPL\", \"idx\": 1263542400000, \"val\": 197.93}, {\"col\": \"IBM\", \"idx\": 1263542400000, \"val\": 122.0}, {\"col\": \"YHOO\", \"idx\": 1263542400000, \"val\": 16.82}, {\"col\": \"MSFT\", \"idx\": 1263542400000, \"val\": 27.59}, {\"col\": \"AAPL\", \"idx\": 1263888000000, \"val\": 206.69}, {\"col\": \"IBM\", \"idx\": 1263888000000, \"val\": 124.19}, {\"col\": \"YHOO\", \"idx\": 1263888000000, \"val\": 16.75}, {\"col\": \"MSFT\", \"idx\": 1263888000000, \"val\": 27.8}, {\"col\": \"AAPL\", \"idx\": 1263974400000, \"val\": 203.51}, {\"col\": \"IBM\", \"idx\": 1263974400000, \"val\": 120.58}, {\"col\": \"YHOO\", \"idx\": 1263974400000, \"val\": 16.38}, {\"col\": \"MSFT\", \"idx\": 1263974400000, \"val\": 27.35}, {\"col\": \"AAPL\", \"idx\": 1264060800000, \"val\": 199.99}, {\"col\": \"IBM\", \"idx\": 1264060800000, \"val\": 119.43}, {\"col\": \"YHOO\", \"idx\": 1264060800000, \"val\": 16.2}, {\"col\": \"MSFT\", \"idx\": 1264060800000, \"val\": 26.83}, {\"col\": \"AAPL\", \"idx\": 1264147200000, \"val\": 190.07}, {\"col\": \"IBM\", \"idx\": 1264147200000, \"val\": 116.19}, {\"col\": \"YHOO\", \"idx\": 1264147200000, \"val\": 15.88}, {\"col\": \"MSFT\", \"idx\": 1264147200000, \"val\": 25.89}, {\"col\": \"AAPL\", \"idx\": 1264406400000, \"val\": 195.18}, {\"col\": \"IBM\", \"idx\": 1264406400000, \"val\": 116.76}, {\"col\": \"YHOO\", \"idx\": 1264406400000, \"val\": 15.86}, {\"col\": \"MSFT\", \"idx\": 1264406400000, \"val\": 26.21}, {\"col\": \"AAPL\", \"idx\": 1264492800000, \"val\": 197.94}, {\"col\": \"IBM\", \"idx\": 1264492800000, \"val\": 116.42}, {\"col\": \"YHOO\", \"idx\": 1264492800000, \"val\": 15.99}, {\"col\": \"MSFT\", \"idx\": 12644928000
|
||
|
" chart({el: \"#vis47fdfca404f24684b44753131b44ed27\"}).update();\n",
|
||
|
" });\n",
|
||
|
" };\n",
|
||
|
" _do_plot();\n",
|
||
|
" })();\n",
|
||
|
"</script>\n",
|
||
|
"<style>.vega canvas {width: 100%;}</style>\n",
|
||
|
" "
|
||
|
],
|
||
|
"text/plain": [
|
||
|
"<vincent.charts.Line at 0x10290f710>"
|
||
|
]
|
||
|
},
|
||
|
"metadata": {},
|
||
|
"output_type": "display_data"
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"line = vincent.Line(price[['AAPL', 'IBM', 'YHOO', 'MSFT']], width=600, height=300)\n",
|
||
|
"line.axis_titles(x='Date', y='Price')\n",
|
||
|
"line.legend(title='Ticker')\n",
|
||
|
"display(line)"
|
||
|
]
|
||
|
}
|
||
|
],
|
||
|
"metadata": {},
|
||
|
"nbformat": 4,
|
||
|
"nbformat_minor": 0
|
||
|
}
|