bachelor_thesis/prog/python/qqgg/monte_carlo.py

370 lines
13 KiB
Python

"""
Simple monte carlo integration implementation.
Author: Valentin Boettcher <hiro@protagon.space>
"""
import numpy as np
from scipy.optimize import minimize_scalar, root
from dataclasses import dataclass
def _process_interval(interval):
assert len(interval) == 2, 'An interval has two endpoints'
a, b = interval
if b < a:
a, b = b, a
return [a, b]
@dataclass
class IntegrationResult:
result: float
sigma: float
N: int
@property
def combined_result(self):
"""
Get the result and accuracy combined as tuple.
"""
return self.result, self.sigma
def integrate(f, interval, epsilon=.01,
seed=None, **kwargs) -> IntegrationResult:
"""Monte-Carlo integrates the functin `f` in an interval.
:param f: function of one variable, kwargs are passed to it
:param tuple interval: a 2-tuple of numbers, specifiying the
integration range
:param epsilon: desired accuracy
:param seed: the seed for the rng, if not specified, the system
time is used
:returns: the integration result
:rtype: IntegrationResult
"""
interval = _process_interval(interval)
if seed:
np.random.seed(seed)
interval_length = (interval[1] - interval[0])
# guess the correct N
probe_points = np.random.uniform(interval[0], interval[1],
int(interval_length*10))
num_points = int((interval_length \
* f(probe_points, **kwargs).std()/epsilon)**2*1.1 + 1)
# now we iterate until we hit the desired epsilon
while True:
points = np.random.uniform(interval[0], interval[1], num_points)
sample = f(points, **kwargs)
integral = np.sum(sample)/num_points*interval_length
# the deviation gets multiplied by the square root of the interval
# lenght, because it is the standard deviation of the integral.
sample_std = np.std(sample)*interval_length
deviation = sample_std*np.sqrt(1/(num_points - 1))
if deviation < epsilon:
return IntegrationResult(integral, deviation, num_points)
# then we refine our guess, the factor 1.1
num_points = int((sample_std/epsilon)**2*1.1)
def find_upper_bound(f, interval, **kwargs):
"""Find the upper bound of a function.
:param f: function of one scalar and some kwargs that are passed
on to it
:param interval: interval to look in
:returns: the upper bound of the function
:rtype: float
"""
upper_bound = minimize_scalar(lambda *args: -f(*args, **kwargs),
bounds=interval, method='bounded')
if upper_bound.success:
return -upper_bound.fun
else:
raise RuntimeError('Could not find an upper bound.')
def sample_unweighted(f, interval, upper_bound=None, seed=None,
chunk_size=100, report_efficiency=False, **kwargs):
"""Samples a distribution proportional to f by hit and miss.
Implemented as a generator.
:param f: function of one scalar to sample, should be positive,
superflous kwargs are passed to it
:param interval: the interval to sample from
:param upper_bound: an upper bound to the function, optional
:param seed: the seed for the rng, if not specified, the system
time is used
:param chunk_size: the size of the chunks of random numbers
allocated per unit interval
:yields: random nubers following the distribution of f
:rtype: float
"""
interval = _process_interval(interval)
interval_length = (interval[1] - interval[0])
if seed:
np.random.seed(seed)
upper_bound_fn, upper_bound_integral, upper_bound_integral_inverse = None, None, None
# i know....
if not upper_bound:
upper_bound_value = find_upper_bound(f, interval, **kwargs)
def upper_bound_fn(x): return upper_bound_value
def upper_bound_integral(x): return upper_bound_value*x
def upper_bound_integral_inverse(y): return y/upper_bound_value
elif len(upper_bound) == 2:
upper_bound_fn, upper_bound_integral =\
upper_bound
def upper_inv(points): # not for performance right now...
return np.array([root(lambda y: upper_bound_integral(y) - x, x0=0,
jac=upper_bound_fn).x for x in points]).T
upper_bound_integral_inverse = upper_inv
elif len(upper_bound) == 3:
upper_bound_fn, upper_bound_integral, upper_bound_integral_inverse =\
upper_bound
else:
raise ValueError('The upper bound must be `None` or a three element sequence!')
def allocate_random_chunk():
return np.random.uniform([upper_bound_integral(interval[0]), 0],
[upper_bound_integral(interval[1]), 1],
[int(chunk_size*interval_length), 2])
total_points = 0
total_accepted = 0
while True:
points = allocate_random_chunk()
points[:, 0] = upper_bound_integral_inverse(points[:, 0])
sample_points = points[:, 0] \
[np.where(f(points[:, 0]) > \
points[:, 1]*upper_bound_fn(points[:, 0]))]
if report_efficiency:
total_points += points.size
total_accepted += sample_points.size
for point in sample_points:
yield (point, total_accepted/total_points) \
if report_efficiency else point
def integrate_vegas(f, interval, seed=None, num_increments=5,
point_density=1000, epsilon=1e-2, alpha=1.5, acumulate=True,
**kwargs):
"""Integrate the given function (in one dimension) with the vegas
algorithm to reduce variance. This implementation follows the
description given in JOURNAL OF COMPUTATIONAL 27, 192-203 (1978).
All iterations contribute to the final result.
:param f: function of one variable, kwargs are passed to it
:param tuple interval: a 2-tuple of numbers, specifiying the
integration range
:param seed: the seed for the rng, if not specified, the system
time is used
:param num_increments: the number increments in which to divide
the interval
:param point_density: the number of random points per unit
interval
:param epsilon: the breaking condition, if the magnitude of the
difference between the increment positions in subsequent
iterations does not change more then epsilon the computation
is considered to have converged
:param alpha: controls the the convergence speed, should be
between 1 and 2 (the lower the faster)
:returns: the intregal, the standard deviation, an array of
increment borders which can be used in subsequent
sampling
:rtype: tuple
"""
interval = _process_interval(interval)
interval_length = (interval[1] - interval[0])
if seed:
np.random.seed(seed)
# start with equally sized intervals
interval_borders = np.linspace(*interval, num_increments + 1, endpoint=True)
points_per_increment = int(point_density*interval_length/num_increments)
total_points = points_per_increment*num_increments
def evaluate_integrand(interval_borders, interval_lengths):
intervals = np.array((interval_borders[:-1], interval_borders[1:]))
sample_points = np.random.uniform(*intervals,
(points_per_increment, num_increments)).T
weighted_f_values = f(sample_points, **kwargs)*interval_lengths[:, None]
# the mean here has absorbed the num_increments
integral_steps = weighted_f_values.mean(axis=1)
integral = integral_steps.sum()
variance = ((f(sample_points, **kwargs).std(axis=1)*interval_lengths)**2).sum() / (points_per_increment - 1)
return integral, integral_steps, variance
K = num_increments*1000
increment_borders = interval_borders[1:-1] - interval_borders[0]
integrals = []
variances = []
while True:
interval_lengths = interval_borders[1:] - interval_borders[:-1]
integral, integral_steps, variance = \
evaluate_integrand(interval_borders, interval_lengths)
integrals.append(integral)
variances.append(variance)
# alpha controls the convergence speed
μ = np.abs(integral_steps)/integral
new_increments = (K*((μ - 1)/(np.log(μ)))**alpha).astype(int)
group_size = new_increments.sum()/num_increments
new_increment_borders = np.empty_like(increment_borders)
# this whole code does a very simple thing: it eats up
# sub-increments until it has `group_size` of them
i = 0 # position in increment count list
j = 0 # position in new_incerement_borders
rest = new_increments[0] # the number of sub-increments still available
head = group_size # the number of sub-increments needed to
# fill one increment
current = 0 # the current position in the interval relative
# to its beginning
while i < num_increments and (j < (num_increments - 1)):
if new_increments[i] == 0:
i += 1
rest = new_increments[i]
current_increment_size = interval_lengths[i]/new_increments[i]
if head <= rest:
current += head*current_increment_size
new_increment_borders[j] = current
rest -= head
head = group_size
j += 1
else:
current += rest*current_increment_size
head -= rest
i += 1
rest = new_increments[i]
interval_borders[1:-1] = interval_borders[0] + increment_borders
if np.linalg.norm(increment_borders - new_increment_borders) < epsilon:
if not acumulate:
return integrals[-1], np.sqrt(variances[-1]), interval_borders
integrals = np.array(integrals)
variances = np.array(variances)
integral = np.sum(integrals**3/variances**2) \
/np.sum(integrals**2/variances**2)
mean_variance = 1/np.sqrt(np.sum(integrals**2/variances**2))*integral
return integral, np.sqrt(mean_variance), interval_borders
increment_borders = new_increment_borders
def sample_stratified(f, increment_borders, seed=None, chunk_size=100,
report_efficiency=False, **kwargs):
"""Samples a distribution proportional to f by hit and miss.
Implemented as a generator.
:param f: function of one scalar to sample, should be positive,
superflous kwargs are passed to it
:param interval: the interval to sample from
:param seed: the seed for the rng, if not specified, the system
time is used
:param chunk_size: the size of the chunks of random numbers
allocated per unit interval
:yields: random nubers following the distribution of f
"""
increment_count = increment_borders.size - 1
increment_lenghts = increment_borders[1:] - increment_borders[:-1]
weights = increment_count*increment_lenghts
increment_chunk = int(chunk_size/increment_count)
chunk_size = increment_chunk*increment_count
upper_bound = \
np.array([find_upper_bound(lambda x: f(x, **kwargs)*weight,
[left_border, right_border]) \
for weight, left_border, right_border \
in zip(weights,
increment_borders[:-1],
increment_borders[1:])]).max()
total_samples = 0
total_accepted = 0
while True:
increment_samples = np.random.uniform(increment_borders[:-1],
increment_borders[1:],
[increment_chunk,
increment_count])
increment_y_samples = np.random.uniform(0, 1,
[increment_chunk,
increment_count])
f_weighted = f(increment_samples)*weights # numpy magic at work here
mask = f_weighted > increment_y_samples*upper_bound
if report_efficiency:
total_samples += chunk_size
total_accepted += np.count_nonzero(mask)
for point in increment_samples[mask]:
yield (point, total_accepted/total_samples) \
if report_efficiency else point
def sample_unweighted_array(num, *args, increment_borders=None,
report_efficiency=False, **kwargs):
"""Sample `num` elements from a distribution. The rest of the
arguments is analogous to `sample_unweighted`.
"""
sample_arr = np.empty(num)
if 'chunk_size' not in kwargs:
kwargs['chunk_size'] = num*10
samples = \
sample_unweighted(*args,
report_efficiency=report_efficiency,
**kwargs) \
if increment_borders is None else \
sample_stratified(*args,
increment_borders=increment_borders,
report_efficiency=report_efficiency, **kwargs)
for i, sample in zip(range(num), samples):
if report_efficiency:
sample_arr[i], _ = sample
else:
sample_arr[i] = sample
return (sample_arr, next(samples)[1]) if report_efficiency else sample_arr