""" Implementation of the analytical cross section for q q_bar -> γγ in the lab frame. Author: Valentin Boettcher """ import numpy as np import monte_carlo import lhapdf from numba import jit, vectorize, float64 @vectorize([float64(float64, float64, float64, float64)], nopython=True) def energy_factor(e_proton, charge, x_1, x_2): """Calculates the factor common to all other values in this module. :param e_proton: proton energy per beam :param charge: charge of the quark :param x_1: momentum fraction of the first quark :param x_2: momentum fraction of the second quark """ return charge ** 4 / (137.036 * e_proton) ** 2 / (24 * x_1 * x_2) def momenta(e_proton, x_1, x_2, cosθ, φ=None): """Given the Energy of the incoming protons `e_proton` and the momentum fractions `x_1` and `x_2` as well as the cosine of the azimuth angle of the first photon the 4-momenta of all particles are calculated. """ x_1 = np.asarray(x_1) x_2 = np.asarray(x_2) cosθ = np.asarray(cosθ) if φ is None: φ = 0 cosφ = np.ones_like(cosθ) sinφ = 0 else: if φ == "rand": φ = np.random.uniform(0, 2 * np.pi, cosθ.shape) else: φ = np.asarray(φ) sinφ = np.sin(φ) cosφ = np.cos(φ) assert ( x_1.shape == x_2.shape == cosθ.shape ), "Invalid shapes for the event parameters." sinθ = np.sqrt(1 - cosθ ** 2) ones = np.ones_like(cosθ) zeros = np.zeros_like(cosθ) q_1 = e_proton * x_1 * np.array([ones, zeros, zeros, ones,]) q_2 = e_proton * x_2 * np.array([ones, zeros, zeros, -ones,]) g_3 = ( 2 * e_proton * x_1 * x_2 / (x_1 + x_2 - (x_1 - x_2) * cosθ) * np.array([1 * np.ones_like(cosθ), sinθ * sinφ, cosφ * sinθ, cosθ]) ) g_4 = q_1 + q_2 - g_3 q_1 = q_1.reshape(4, cosθ.size).T q_2 = q_2.reshape(4, cosθ.size).T g_3 = g_3.reshape(4, cosθ.size).T g_4 = g_4.reshape(4, cosθ.size).T return np.array([q_1, q_2, g_3, g_4]) @vectorize([float64(float64, float64, float64, float64, float64)], nopython=True) def diff_xs_η(e_proton, charge, η, x_1, x_2): """Calculates the differential cross section as a function of the cosine of the pseudo rapidity η of one photon in units of 1/GeV². Here dΩ=dηdφ :param e_proton: proton energy per beam [GeV] :param charge: charge of the quark :param x_1: momentum fraction of the first quark :param x_2: momentum fraction of the second quark :param η: pseudo rapidity :return: the differential cross section [GeV^{-2}] """ rap = np.arctanh((x_1 - x_2) / (x_1 + x_2)) f = energy_factor(e_proton, charge, x_1, x_2) return f * ((np.tanh(η - rap)) ** 2 + 1) @vectorize([float64(float64, float64, float64)], nopython=True) def averaged_tchanel_q2(e_proton, x_1, x_2): return 2 * x_1 * x_2 * e_proton ** 2 def cut_pT_from_eta(greater_than=0): def cut(e_proton, η, x1, x2): cosθ = np.cos(η_to_θ(η)) _, _, p1, p2 = momenta(e_proton, x1, x2, cosθ) return ( np.sqrt((p1[0][1:3] ** 2).sum()) > greater_than and np.sqrt((p2[0][1:3] ** 2).sum()) > greater_than ) return cut from numba.extending import get_cython_function_address def get_xs_distribution_with_pdf(xs, q, e_hadron, quarks=None, pdf=None, cut=None): """Creates a function that takes an event (type np.ndarray) of the form [angle_arg, impulse fractions of quarks in hadron 1, impulse fractions of quarks in hadron 2] and returns the differential cross section for such an event. I would have used an object as argument, wasn't for the sampling function that needs a vector valued function. Angle_Arg can actually be any angular-like parameter as long as the xs has the corresponding parameter. :param xs: cross section function with signature (energy hadron, angle_arg, x_1, x_2) :param q2: the momentum transfer Q^2 as a function with the signature (e_hadron, x_1, x_2) :param quarks: the constituent quarks np.ndarray of the form [[id, charge], ...], the default is a proton :param pdf: the PDF to use, the default is "NNPDF31_lo_as_0118" :param cut: cut function with signature (energy hadron, angle_arg, x_1, x_2) to return 0, when the event does not fit the cut :returns: differential cross section summed over flavors and weighted with the pdfs :rtype: function """ pdf = pdf or lhapdf.mkPDF("NNPDF31_lo_as_0118", 0) quarks = quarks or np.array( [[5, -1 / 3], [4, 2 / 3], [3, -1 / 3], [2, 2 / 3], [1, -1 / 3]] ) # proton supported_quarks = pdf.flavors() for flavor in quarks[:, 0]: assert flavor in supported_quarks, ( "The PDF doesn't support the quark flavor " + flavor ) xfxQ2 = pdf.xfxQ2 # @jit(float64(float64[4])) Unfortunately that does not work as yet! def distribution(event: np.ndarray) -> float: if cut and not cut(e_hadron, *event): return 0 angle_arg, x_1, x_2 = event q2_value = q(e_hadron, x_1, x_2) result = 0 for quark, charge in quarks: xs_value = xs(e_hadron, charge, angle_arg, x_1, x_2) result += ( (xfxQ2(quark, x_1, q2_value) + xfxQ2(-quark, x_1, q2_value)) / x_1 * (xfxQ2(-quark, x_2, q2_value) + xfxQ2(quark, x_2, q2_value)) / x_2 * xs_value ) return result return distribution, (pdf.xMin, pdf.xMax) def sample_momenta(num_samples, dist, interval, e_hadron, upper_bound=None, **kwargs): res, eff = monte_carlo.sample_unweighted_array( num_samples, dist, interval, upper_bound=upper_bound, report_efficiency=True, **kwargs ) cosθ, x_1, x_2 = res.T return momenta(e_hadron, x_1[None, :], x_2[None, :], cosθ[None, :]), eff