#+PROPERTY: header-args :exports both :output-dir results :session xs :kernel python3 * Init ** Required Modules #+NAME: e988e3f2-ad1f-49a3-ad60-bedba3863283 #+begin_src jupyter-python :exports both :tangle tangled/xs.py import numpy as np import matplotlib.pyplot as plt import monte_carlo #+end_src #+RESULTS: e988e3f2-ad1f-49a3-ad60-bedba3863283 ** Utilities #+NAME: 53548778-a4c1-461a-9b1f-0f401df12b08 #+BEGIN_SRC jupyter-python :exports both %run ../utility.py %load_ext autoreload %aimport monte_carlo %autoreload 1 #+END_SRC #+RESULTS: 53548778-a4c1-461a-9b1f-0f401df12b08 * Implementation #+NAME: 777a013b-6c20-44bd-b58b-6a7690c21c0e #+BEGIN_SRC jupyter-python :exports both :results raw drawer :exports code :tangle tangled/xs.py """ Implementation of the analytical cross section for q q_bar -> gamma gamma Author: Valentin Boettcher """ import numpy as np # NOTE: a more elegant solution would be a decorator def energy_factor(charge, esp): """ Calculates the factor common to all other values in this module Arguments: esp -- center of momentum energy in GeV charge -- charge of the particle in units of the elementary charge """ return charge**4/(137.036*esp)**2/6 def diff_xs(θ, charge, esp): """ Calculates the differential cross section as a function of the azimuth angle θ in units of 1/GeV². Here dΩ=sinθdθdφ Arguments: θ -- azimuth angle esp -- center of momentum energy in GeV charge -- charge of the particle in units of the elementary charge """ f = energy_factor(charge, esp) return f*((np.cos(θ)**2+1)/np.sin(θ)**2) def diff_xs_cosθ(cosθ, charge, esp): """ Calculates the differential cross section as a function of the cosine of the azimuth angle θ in units of 1/GeV². Here dΩ=d(cosθ)dφ Arguments: cosθ -- cosine of the azimuth angle esp -- center of momentum energy in GeV charge -- charge of the particle in units of the elementary charge """ f = energy_factor(charge, esp) return f*((cosθ**2+1)/(1-cosθ**2)) def diff_xs_eta(η, charge, esp): """ Calculates the differential cross section as a function of the pseudo rapidity of the photons in units of 1/GeV^2. This is actually the crossection dσ/(dφdη). Arguments: η -- pseudo rapidity esp -- center of momentum energy in GeV charge -- charge of the particle in units of the elementary charge """ f = energy_factor(charge, esp) return f*(np.tanh(η)**2 + 1) def diff_xs_p_t(p_t, charge, esp): """ Calculates the differential cross section as a function of the transverse momentum (p_t) of the photons in units of 1/GeV^2. This is actually the crossection dσ/(dφdp_t). Arguments: p_t -- transverse momentum in GeV esp -- center of momentum energy in GeV charge -- charge of the particle in units of the elementary charge """ f = energy_factor(charge, esp) sqrt_fact = np.sqrt(1-(2*p_t/esp)**2) return f/p_t*(1/sqrt_fact + sqrt_fact) def total_xs_eta(η, charge, esp): """ Calculates the total cross section as a function of the pseudo rapidity of the photons in units of 1/GeV^2. If the rapditiy is specified as a tuple, it is interpreted as an interval. Otherwise the interval [-η, η] will be used. Arguments: η -- pseudo rapidity (tuple or number) esp -- center of momentum energy in GeV charge -- charge of the particle in units of the elementar charge """ f = energy_factor(charge, esp) if not isinstance(η, tuple): η = (-η, η) if len(η) != 2: raise ValueError('Invalid η cut.') def F(x): return np.tanh(x) - 2*x return 2*np.pi*f*(F(η[0]) - F(η[1])) #+END_SRC #+RESULTS: 777a013b-6c20-44bd-b58b-6a7690c21c0e * Calculations ** XS qq -> gamma gamma First, set up the input parameters. #+BEGIN_SRC jupyter-python :exports both :results raw drawer η = 2.5 charge = 1/3 esp = 200 # GeV #+END_SRC #+RESULTS: Set up the integration and plot intervals. #+begin_src jupyter-python :exports both :results raw drawer interval_η = [-η, η] interval = η_to_θ([-η, η]) interval_cosθ = np.cos(interval) interval_pt = np.sort(η_to_pt([0, η], esp/2)) plot_interval = [0.1, np.pi-.1] #+end_src #+RESULTS: *** Analytical Integration And now calculate the cross section in picobarn. #+BEGIN_SRC jupyter-python :exports both :results raw file :file xs.tex xs_gev = total_xs_eta(η, charge, esp) xs_pb = gev_to_pb(xs_gev) tex_value(xs_pb, unit=r'\pico\barn', prefix=r'\sigma = ', prec=6, save=('results', 'xs.tex')) #+END_SRC #+RESULTS: : \(\sigma = \SI{0.053793}{\pico\barn}\) Lets plot the total xs as a function of η. #+begin_src jupyter-python :exports both :results raw drawer fig, ax = set_up_plot() η_s = np.linspace(0, 3, 1000) ax.plot(η_s, gev_to_pb(total_xs_eta(η_s, charge, esp))) ax.set_xlabel(r'$\eta$') ax.set_ylabel(r'$\sigma$ [pb]') ax.set_xlim([0, max(η_s)]) ax.set_ylim(0) save_fig(fig, 'total_xs', 'xs', size=[2.5, 2]) #+end_src #+RESULTS: [[file:./.ob-jupyter/b709b22e5727fe27a94a18f9d31d40567f035376.png]] Compared to sherpa, it's pretty close. #+NAME: 81b5ed93-0312-45dc-beec-e2ba92e22626 #+BEGIN_SRC jupyter-python :exports both :results raw drawer sherpa = 0.05380 xs_pb - sherpa #+END_SRC #+RESULTS: 81b5ed93-0312-45dc-beec-e2ba92e22626 : -6.7112594623469635e-06 I had to set the runcard option ~EW_SCHEME: alpha0~ to use the pure QED coupling constant. *** Numerical Integration Plot our nice distribution: #+begin_src jupyter-python :exports both :results raw drawer plot_points = np.linspace(*plot_interval, 1000) fig, ax = set_up_plot() ax.plot(plot_points, gev_to_pb(diff_xs(plot_points, charge=charge, esp=esp))) ax.set_xlabel(r'$\theta$') ax.set_ylabel(r'$d\sigma/d\Omega$ [pb]') ax.axvline(interval[0], color='gray', linestyle='--') ax.axvline(interval[1], color='gray', linestyle='--', label=rf'$|\eta|={η}$') ax.legend() save_fig(fig, 'diff_xs', 'xs', size=[2.5, 2]) #+end_src #+RESULTS: [[file:./.ob-jupyter/aa1aab15903411e94de8fd1d6f9b8c1de0e95b67.png]] Define the integrand. #+begin_src jupyter-python :exports both :results raw drawer def xs_pb_int(θ): return 2*np.pi*gev_to_pb(np.sin(θ)*diff_xs(θ, charge=charge, esp=esp)) def xs_pb_int_η(η): return 2*np.pi*gev_to_pb(diff_xs_eta(η, charge, esp)) #+end_src #+RESULTS: Plot the integrand. # TODO: remove duplication #+begin_src jupyter-python :exports both :results raw drawer fig, ax = set_up_plot() ax.plot(plot_points, xs_pb_int(plot_points)) ax.set_xlabel(r'$\theta$') ax.set_ylabel(r'$\sin(\theta)\cdot\frac{d\sigma}{d\Omega}$ [pb]') ax.axvline(interval[0], color='gray', linestyle='--') ax.axvline(interval[1], color='gray', linestyle='--', label=rf'$|\eta|={η}$') ax.legend() save_fig(fig, 'xs_integrand', 'xs', size=[4, 4]) #+end_src #+RESULTS: [[file:./.ob-jupyter/a84ac9746f0f4b0c2f1038dc249e557fc1fe48f5.png]] **** Integral over θ Intergrate σ with the mc method. #+begin_src jupyter-python :exports both :results raw drawer xs_pb_mc, xs_pb_mc_err = monte_carlo.integrate(xs_pb_int, interval, 1000) xs_pb_mc = xs_pb_mc xs_pb_mc, xs_pb_mc_err #+end_src #+RESULTS: | 0.05323177940348952 | 0.000836179760412404 | We gonna export that as tex. #+begin_src jupyter-python :exports both :results raw drawer tex_value(xs_pb_mc, unit=r'\pico\barn', prefix=r'\sigma = ', err=xs_pb_mc_err, save=('results', 'xs_mc.tex')) #+end_src #+RESULTS: : \(\sigma = \SI{0.0543\pm 0.0008}{\pico\barn}\) **** Integration over η Plot the intgrand of the pseudo rap. #+begin_src jupyter-python :exports both :results raw drawer fig, ax = set_up_plot() points = np.linspace(*interval_η, 1000) ax.plot(points, xs_pb_int_η(points)) ax.set_xlabel(r'$\eta$') ax.set_ylabel(r'$\frac{d\sigma}{d\theta}$ [pb]') save_fig(fig, 'xs_integrand_η', 'xs', size=[4, 4]) #+end_src #+RESULTS: [[file:./.ob-jupyter/09de667c0ccb1d17fef74918e3f462a1340df113.png]] As we see, the result is much better if we use pseudo rapidity, because the differential cross section does not difverge anymore. #+begin_src jupyter-python :exports both :results raw drawer xs_pb_η = monte_carlo.integrate(xs_pb_int_η, interval_η, 1000) xs_pb_η #+end_src #+RESULTS: | 0.05369352543075011 | 0.0001566582384086374 | And yet again export that as tex. #+begin_src jupyter-python :exports both :results raw drawer tex_value(*xs_pb_η, unit=r'\pico\barn', prefix=r'\sigma = ', save=('results', 'xs_mc_eta.tex')) #+end_src #+RESULTS: : \(\sigma = \SI{0.05398\pm 0.00016}{\pico\barn}\) **** Using =VEGAS= Now we use =VEGAS= on the θ parametrisation and see what happens. #+begin_src jupyter-python :exports both :results raw drawer xs_pb_vegas, xs_pb_vegas_σ, xs_θ_intervals = \ monte_carlo.integrate_vegas(xs_pb_int, interval, num_increments=20, alpha=4, point_density=1000, acumulate=True) xs_pb_vegas, xs_pb_vegas_σ #+end_src #+RESULTS: :RESULTS: : shtsh | 0.053806254940947366 | 5.91849792512895e-05 | :END: This is pretty good, although the variance reduction may be achieved partially by accumulating the results from all runns. The uncertainty is being overestimated! And export that as tex. #+begin_src jupyter-python :exports both :results raw drawer tex_value(xs_pb_vegas, xs_pb_vegas_σ, unit=r'\pico\barn', prefix=r'\sigma = ', save=('results', 'xs_mc_θ_vegas.tex')) #+end_src #+RESULTS: : \(\sigma = \SI{0.05383\pm 0.00007}{\pico\barn}\) Surprisingly, without acumulation, the result ain't much different. This depends, of course, on the iteration count. #+begin_src jupyter-python :exports both :results raw drawer monte_carlo.integrate_vegas(xs_pb_int, interval, num_increments=20, alpha=4, point_density=1000, acumulate=False)[0:2] #+end_src #+RESULTS: | 0.05386167571815434 | 7.519896920354165e-05 | **** Testing the Statistics Let's battle test the statistics. #+begin_src jupyter-python :exports both :results raw drawer num_runs = 1000 num_within = 0 for _ in range(num_runs): val, err = monte_carlo.integrate(xs_pb_int_η, interval_η, 1000) if abs(xs_pb - val) <= err: num_within += 1 num_within/num_runs #+end_src #+RESULTS: : 0.671 So we see: the standard deviation is sound. Doing the same thing with =VEGAS= shows, that we overestimate σ here. #+begin_src jupyter-python :exports both :results raw drawer num_runs = 1000 num_within = 0 for _ in range(num_runs): val, err, _ = \ monte_carlo.integrate_vegas(xs_pb_int, interval, num_increments=20, alpha=4, point_density=1000, acumulate=False) if abs(xs_pb - val) <= err: num_within += 1 num_within/num_runs #+end_src #+RESULTS: : 0.727 *** Sampling and Analysis Define the sample number. #+begin_src jupyter-python :exports both :results raw drawer sample_num = 1000 #+end_src #+RESULTS: Let's define shortcuts for our distributions. The 2π are just there for formal correctnes. Factors do not influecence the outcome. #+begin_src jupyter-python :exports both :results raw drawer def dist_θ(x): return gev_to_pb(diff_xs_cosθ(x, charge, esp))*2*np.pi def dist_η(x): return gev_to_pb(diff_xs_eta(x, charge, esp))*2*np.pi #+end_src #+RESULTS: **** Sampling the cosθ cross section Now we monte-carlo sample our distribution. We observe that the efficiency his very bad! #+begin_src jupyter-python :exports both :results raw drawer cosθ_sample, cosθ_efficiency = \ monte_carlo.sample_unweighted_array(sample_num, dist_θ, interval_cosθ, report_efficiency=True) cosθ_efficiency #+end_src #+RESULTS: : 0.026983702912102593 Our distribution has a lot of variance, as can be seen by plotting it. #+begin_src jupyter-python :exports both :results raw drawer pts = np.linspace(*interval_cosθ, 100) fig, ax = set_up_plot() ax.plot(pts, dist_θ(pts), label=r'$\frac{d\sigma}{d\Omega}$') #+end_src #+RESULTS: :RESULTS: | | [[file:./.ob-jupyter/04d0c9300d134c04b087aef7bb0a1b6036038b64.png]] :END: We define a friendly and easy to integrate upper limit function. #+begin_src jupyter-python :exports both :results raw drawer upper_limit = dist_θ(interval_cosθ[0]) \ /interval_cosθ[0]**2 upper_base = dist_θ(0) def upper(x): return upper_base + upper_limit*x**2 def upper_int(x): return upper_base*x + upper_limit*x**3/3 ax.plot(pts, upper(pts), label='Upper bound') ax.legend() ax.set_xlabel(r'$\cos\theta$') ax.set_ylabel(r'$\frac{d\sigma}{d\Omega}$') save_fig(fig, 'upper_bound', 'xs_sampling', size=(4, 4)) fig #+end_src #+RESULTS: [[file:./.ob-jupyter/1a720f93049e88987bdddac861b1c3847501e271.png]] To increase our efficiency, we have to specify an upper bound. That is at least a little bit better. The numeric inversion is horribly inefficent. #+begin_src jupyter-python :exports both :results raw drawer cosθ_sample, cosθ_efficiency = \ monte_carlo.sample_unweighted_array(sample_num, dist_θ, interval_cosθ, report_efficiency=True, upper_bound=[upper, upper_int]) cosθ_efficiency #+end_src #+RESULTS: : 0.08121827411167512 Nice! And now draw some histograms. We define an auxilliary method for convenience. #+begin_src jupyter-python :exports both :results raw drawer def draw_histo(points, xlabel, bins=20): heights, edges = np.histogram(points, bins) centers = (edges[1:] + edges[:-1])/2 deviations = np.sqrt(heights) fig, ax = set_up_plot() ax.errorbar(centers, heights, deviations, linestyle='none', color='orange') ax.step(edges, [heights[0], *heights], color='#1f77b4') ax.set_xlabel(xlabel) ax.set_xlim([points.min(), points.max()]) return fig, ax #+end_src #+RESULTS: The histogram for cosθ. #+begin_src jupyter-python :exports both :results raw drawer fig, _ = draw_histo(cosθ_sample, r'$\cos\theta$') save_fig(fig, 'histo_cos_theta', 'xs', size=(4,3)) #+end_src #+RESULTS: [[file:./.ob-jupyter/8d1918ded7e3dac99fb6ae915aa5118ecd63e3b0.png]] **** Observables Now we define some utilities to draw real 4-momentum samples. #+begin_src jupyter-python :exports both :tangle tangled/xs.py def sample_momenta(sample_num, interval, charge, esp, seed=None): """Samples `sample_num` unweighted photon 4-momenta from the cross-section. :param sample_num: number of samples to take :param interval: cosθ interval to sample from :param charge: the charge of the quark :param esp: center of mass energy :param seed: the seed for the rng, optional, default is system time :returns: an array of 4 photon momenta :rtype: np.ndarray """ cosθ_sample = \ monte_carlo.sample_unweighted_array(sample_num, lambda x: diff_xs_cosθ(x, charge, esp), interval_cosθ) φ_sample = np.random.uniform(0, 1, sample_num) def make_momentum(esp, cosθ, φ): sinθ = np.sqrt(1-cosθ**2) return np.array([1, sinθ*np.cos(φ), sinθ*np.sin(φ), cosθ])*esp/2 momenta = np.array([make_momentum(esp, cosθ, φ) \ for cosθ, φ in np.array([cosθ_sample, φ_sample]).T]) return momenta #+end_src #+RESULTS: To generate histograms of other obeservables, we have to define them as functions on 4-impuleses. Using those to transform samples is analogous to transforming the distribution itself. #+begin_src jupyter-python :exports both :results raw drawer :tangle tangled/observables.py """This module defines some observables on arrays of 4-pulses.""" import numpy as np def p_t(p): """Transverse momentum :param p: array of 4-momenta """ return np.linalg.norm(p[:,1:3], axis=1) def η(p): """Pseudo rapidity. :param p: array of 4-momenta """ return np.arccosh(np.linalg.norm(p[:,1:], axis=1)/p_t(p))*np.sign(p[:, 3]) #+end_src #+RESULTS: Lets try it out. #+begin_src jupyter-python :exports both :results raw drawer momentum_sample = sample_momenta(2000, interval_cosθ, charge, esp) momentum_sample #+end_src #+RESULTS: : array([[100. , 14.99955553, 6.52933179, -98.65283149], : [100. , 48.11160501, 71.52596373, -50.68836134], : [100. , 27.36251906, 1.55938536, -96.17099806], : ..., : [100. , 98.44690501, 13.80044529, 10.85147935], : [100. , 17.20635886, 4.27420589, 98.41581366], : [100. , 66.84034758, 32.63142055, 66.83979599]]) Now let's make a histogram of the η distribution. #+begin_src jupyter-python :exports both :results raw drawer η_sample = η(momentum_sample) draw_histo(η_sample, r'$\eta$') #+end_src #+RESULTS: :RESULTS: |
| | [[file:./.ob-jupyter/6ff9fc176c82cc14773edef428f0ae9ceb5ea0e0.png]] :END: And the same for the p_t (transverse momentum) distribution. #+begin_src jupyter-python :exports both :results raw drawer p_t_sample = p_t(momentum_sample) draw_histo(p_t_sample, r'$p_T$ [GeV]') #+end_src #+RESULTS: :RESULTS: |
| | [[file:./.ob-jupyter/bd4170c8985251730a62b9557035c97d315d01ca.png]] :END: That looks somewhat fishy, but it isn't. #+begin_src jupyter-python :exports both :results raw drawer fig, ax = set_up_plot() points = np.linspace(interval_pt[0], interval_pt[1] - .01, 1000) ax.plot(points, gev_to_pb(diff_xs_p_t(points, charge, esp))) ax.set_xlabel(r'$p_T$') ax.set_xlim(interval_pt[0], interval_pt[1] + 1) ax.set_ylim([0, gev_to_pb(diff_xs_p_t(interval_pt[1] -.01, charge, esp))]) ax.set_ylabel(r'$\frac{d\sigma}{dp_t}$ [pb]') save_fig(fig, 'diff_xs_p_t', 'xs_sampling', size=[4, 3]) #+end_src #+RESULTS: [[file:./.ob-jupyter/739fdde6357d58890ef7847d0afc3277cffa9062.png]] this is strongly peaked at p_t=100GeV. (The jacobian goes like 1/x there!) **** Sampling the η cross section An again we see that the efficiency is way, way! better... #+begin_src jupyter-python :exports both :results raw drawer η_sample, η_efficiency = \ monte_carlo.sample_unweighted_array(sample_num, dist_η, interval_η, report_efficiency=True) η_efficiency #+end_src #+RESULTS: : 0.3973333333333333 Let's draw a histogram to compare with the previous results. #+begin_src jupyter-python :exports both :results raw drawer draw_histo(η_sample, r'$\eta$') #+end_src #+RESULTS: :RESULTS: |
| | [[file:./.ob-jupyter/76ee7ba57aa85fd899d1845f3257bc31b49e5a16.png]] :END: Looks good to me :).