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; Abstract
f This note describes the use of VEGAS - a new program for .
% multi-dimensional integration. The theoretical considerations.
:: leading tb VEGAS are briefly described. A Fortran listing of
& the program is included together_with detailed directions on
. its use.
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I. Understanding VEGAS

~ VEGAS estimates the integral (Q = rectangular integration volume)
I= [ d"x £(X) ()
Q

N . |
by computing the integrand at N random points, {;i}l’ in @ and forming the

~
-

weighted average

¥

N fx.
_Z (+1) . (2)
1=]_p(xi)

>

I =§-=

=

The random points are chosen in Q with density p(?), which will be disqussed

' m
below (denx p(X) = 1). VEGAS makes m estimates of the integral, {Sa}a=1’

each using N evaluations of the integrand Eq. (2)). ‘These m estimates are

combined to give a cumulative estimate S:
| " S
1=5=327 - (3)
a O
where o, is the approximate uncertainty in Sa as an estimate of I:

2,
2_ 1 1 Vi)

o = o -
Vs p(x)

-2 (4)

o =1 o

and where ¢ is the approximate uncertainty in S:

] ;Lo (5)
o o

aly|—
Q™

VEGAS also determines whether or not the various estimates are consistent,

' a 2
one with the other, by computing the XZ per degree of freedom (x"/dof):

m
Kfdof = o ] o - (6)

2
When the algorithm is working properly, one expects a ¥ /dofr not much
greater than one, since (Sa-§)2 m_OUﬂf). Otherwise, the various Sa do

not agree "within errors".




If N is made sufficiently large and if f(X) is square integrable, the
Central Limit Theorem implies.that ‘the distribution of S_'s about I becomes

Gaussian. Then Eqs. (3) and (5) are valid, and § is a reliable estimate of

I--i.e.
[S-1| < © with 68% confidence :
< 20 : ;%th 95% confidence AT :
... etc. !

" The X /dof (Eq. (6)) tests to some extent whether the distribution 15.
‘Gauss1an--x /dof >> 1 1mp11es a decidedly non-Gaussian d15tr1but1on of S 's,
in which case |S-1| may be substantially larger than o. The m1n1mum number

topod

of po1nts (N) required per iteration is h1gh1y dependent upon the integrand,
and is usually determined emp1r1ca]1y Smooth Tntegrands require fenlno1nts, i

- integrands with high, narrow peaks or with many fluctuatuions in sign
require more.

When f(?) is integrable, but not square integrable, S may still converge

to I. However the error estimates are completely unreliable, in general
being too small. |
In the simp]est form of Monte Carlo integration, the random integra-
tion points are uniformly distributed--t.e., p(?) = constant. In VEGAS,
the density p(;) is modified so as to minimize oi (Eq. (4)). Uniforn}yr
distributed random points are employed in the first iteration of the inter
gration a]gorithm (i.e., in determining S]). The information gained about
f(X) in this first sampling is used to define a new density p'{X) which
i rEdUCESuai in the next tteration (for Sé). After each subsequent iteratjon,.
p(X) is again refined for use in the next. In this fashion, di'ie'

gradually reduced over several iterations (even theugh N = constant), and the
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estimates S of the integral are progressively improved.

Theoretically, gf is minimized when'

+ £(x | :
(x) = - {8)
P i d"x| £(x)| o
Q | |

--that is when sample points {?}}xare concentrated where the integrand is
largest in magnitude. In VEGAS, this ideal is approximated by dividing

the integration volume into hypercubes using a rectangular grid:

w T

' <—— Hyreecuges
0 ‘ o .

(=n-4)

- %

‘Random points are distributed so that the avérage number of_pointé faiiing

in any given hypercube is the same as in any other. {In high dimensions

.this average is much less one, since the numbéf of hypercubes,ﬁhsoﬁ)‘is much
greater than N). From iteration to iteration, the increment sizes on each

axis are adjusted so as to concentrate hypercubes {and therefore samp]e-points)
in the regions where If(;)[ is largest. For example, if f{x,y) has a high

peak in x and y at the origin, the optimal grid might be:

v T




while if the integrand peaks in x at x = 1/2 but is smooth in'y, the most
efficient grid might resemble:

¥

-> %
Thus over several iterations, VEGAS a&jugts the density of pofnts, ﬁo suit
the integrand, by varying the increment sizes along each axis. This
readjustment continues until the optimal grid is.obtained (i.e., the one most
similar to (8)), beyond which point o, ceases to decrease with each iteration
{(though o continues to decrease, now falling.like ~1//Nm as better statistics
actumulate).

A more detailed description of the a]gérithm used in VEGAS and the
theory behind it is given in G. P. Lepage, J. Comp. Phys. 27, 192 (1978).
Note that the modification discussed in the Appendix of this reference has

been incorporated into VEGAS, thereby substantially impréving its efficiency

t

in low dimensions (n=1,...,4).
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II. Using VEGAS

A. Input
Subroutine VEGAS is written in standard Fortran (see Appendix). VEGAS
is called by the statements: |

EXTERNAL FXN .

CALL VEGAS(NDIM,FXN,AVGI,SD,CHIZA)

where the input variables are
NDIM - n, the number of dimensions (<10);
FXN - Fortran name of the function'subprogfam which computes the
integrand f(X).
The output variables are {double precision) _ ’
AVGI - S, the cumulative estimate of the integral Eq.‘(S));
SD - g, the standard deviation of S from I (Eq. (5));
CHI2A - xz per degree of freedom (Eq. (6)).
Several other parameters.can be set béfore calling VEGAS. These are
contained in common block BVEGI:
COMMON/BVEGT /NCALL, ITMX, NPRN,NDEV,XL{10),XU{10),ACC
Each of these variables has a default value {set in the BLOCK DATA sub-
program). If any of these defaults is to be overridden, this COMMON card
must bérinc1uded in the calling program. The paramenters are defined as.
follows {defaults are in []):
NCALL - N, the approximéte number of integrand evaluations per
iteration [5000]; 0

ITMX - m, the maximum number of iterations [5];
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NPRN > 0 integral, standard deviation, xzand grid information are
printed {(on unit NDEV) for each iteration; {L
= 0 ‘integral, standard deviation and xz are printed for each
iterdtion; |
< 0 nothing is printed by VEGAS;
(see Section II.B) [51;

NDEV - Fortran device number for output from VEGAS. [6];

XL(I) - lower integration 1imit on I-th axis [0.];

XU(I}) - upper integration limit on I-th axis [1;];

ACC - algorithm stops when the relative accuracy, |SD/AVGI|, is less

thén ACC; accuracy is not checked when ACC < 0; [-1.];
The integrand is encoded as a function subprogram:
FUNCTION FXN(X,NGT)
DOUBLE PRECISION X(10), WGT, FXN

FXN = ... Integrand value at point (X(I); I=1, NDIM)
RETURN
END

Note that integration over regions 2 which are not rectangular is made
possible by embedding Q in a rectangular region (specified by XL,XU) and
setting FXN to zero for points X(I) lying outside . :
The user must a1sd provide a random number generator:
SUBﬁOUTINE RANDA(N,RAND)

where (RAND{I),I=1,N) are random numbers (single precision) between 0 and 1.
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B. Output
An estimate of the integral averaged over all iterdtions (AVGI), its
standard deviation (SD) from the exact value, and the 3\2Fdof {CHT2A) are
always returned to the calling program. In addition, if NPRN > 0, ‘the
fol]ow{ng information is printed out for each iteraction’ (on the' Fortran
unit specified by NDEV):
INTEGRAL - the integral as estimated from that iteration alone
| (Sa, Eq. (2)), and the estimate averaged over all
itérations up to that point (S, Eq. (3)):
STD DEV - the standard deviations for these estimates of the
integral (ca; o; Eqgs. (4), (5));
CHI**2 PER IT'N - the x°/dof for all iterations up to that point
(Eq. (6)). |
The input parameters are also listed, at the beginning. When NPRN > 1,
information about the grid used is also printed for each iteration. The
following details are tabulated for each axis:
X - locations along the axis of axis divisions defining the grid;
these are normalized to 1ie between 0 and 1;

'DELT I - contribution AI to the total integral coming from the increment
to the left of X; thus )} AI = I when the sum is over all
increments on any single axis.

This information is printed for every NPRN-th increment on an axis;

NPRN=1 impiies information is printed for all increments.

r
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Finally, note that integration information from the 1ast 1terat1on of
VEGAS 1s always .contained in common biock BVEGA: g M
. COMMON/BVEG4/CALLS,TI, TSI .

where

CALLS = the number of integration points used in that iteration;

Tl = the integral as estimated from that %teration alone;

TSI

I

the standard deviation of this estimate from the exact value,
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C. Multiple Entry Points

The integration élgdrithm can be called in foﬁr ways,.éé;ﬁ dfffering
from the other in the grid used for the first iteration (i.e., in the
distribution of random points) and/or in the initial va]ugsgof the cumulative
variables (i.e., iteration number, cumulative estimate of the integral, etc.);.
Each is called in the same fashion:
CALL  VEGAS (NDIM;FXN,AVGI,SD,CHIZA)

VEGAS]

VEGAS2

VYEGAS3
The function of each is as follows:
VEGAS - sets all cumulative variables to zero before begidhing'the first
iteration, and uses a uniform grid for that iteration. This isttﬁe'routfné 1Hj
normally called (see Section II.A). |
VEGAST - sets all cumulative variables to zero before fhé’first'itératiqn,‘:
but does not initialize the grid. The grid last used by*VEéAS is embloyed i"~:-
the first iteration. For example, consider: o - S

COMMON/BVEGT /NCALL,ITMX, ...
EXTERNAL F1, F2

ITMX = 5
CALL VEGAS (NDIM,F1,ANST,ERRT,CHIST)

ITMX = 2

CALL VEGAST{NDIM,F2,ANS2,ERR2,CHIS?2) :
Here the integral of F1 is evaluated in the usual fashion; the grid'iﬁapfg
to the integrand over five iterations. The grid generated for F] inftﬁé;?ﬁﬁ
iteration (i.e., the fifth) of VEGAS is used in the first iterationuf;fi*

VEGAST, which estimates the integral of F2. If F2 is similar in'strﬁptu?
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to F1, far fewer iterations are required for VEGAS] since the-starting grid

is close to opt1ma1 As another example, consider:

ITMX = 10 |
NCALL = 2000 | o -
CALL VEGAS (NDIM,FXN,AVGI,SD,CHIZA) o |
ITMX =
NCALL = 100000
CALL VEGAST(NDIM,FXN,AVGI,SD,CHIZA)
Here the 1ntegra1 of FXN is estimated 1in f}fteen fterations--the first ten
use 2000 integration points per 1terat10n the last f1ve use 100,000 points
per iteration. Since errors tend to be large until the optimal grid is found,
it is desirable to use as few integration pointSaaS‘possible ianihﬂﬁng it.
In this,examp1e, the hope is that the optimal grid can be:determined in
the first ten iterations, using a total of only 20,000.integrand’ eva1uat1ons
Then NCALL is increased to obtain thé desired precision in the Tast f1ve
iterations. The final estimate of the integral (AVGI) from VEGAST'depends
only upon the Tast five iterations (in this example); aside from the grid;
all information generated in the first ten itérations of VEGAS ds discarded.
Finally, note that any of the parameters discussed in SectionTII.A.cén;

be modified before calling VEGASI.

VEGASZ - Initializes neither the grid nor the cumulative var1ag1es '?ﬁ 3g'f'

the following example
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. COMMON/BYEGT/NCALL ,JTMX,NPRN, . ..

EXTERNAL F

NPRN = -1

ITMX = 5 |
NCALL = 1000

CALL VEGAS{NDIM,F,AVGI,SD,CHIZA)

NPRN = 1 S

It

ITMX = 3 I
NCALL = 10**6 TR
CALL VEGAS2(NDIM,F,AVGI,SD,CHI2A) |
the integral of F is determined in eight iterations--five with 1000 points,
three with 1,000,000 points. As in the exampies above, the final grid from
VEGAS is used as a starting point in VEGAS2. The difference here is that
the final estimate of the integral {AVGI from VEGAS2) is an average over all
eight iterations; estimates from the first five iterations are not discarded,
as they would be were VEGAST used in p1ac; of VEGASZ. In VEGASZ, the
integration algorithm picks up where VEGAS left off and continues as if

there had been no interruption. Finally, any of the parameters discussed

in Section II.A can again be modified before calling VEGASZ.

VEGAS3 - No initialization; main integration loop only. VEGAS3 can be
used if the calling program is to examine results of each single iteration,

as they are generated. For exampie, the following code

bt e e B e Ll 1 NPT 1 e
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ITMX = 1
CALL VEGAS (NDIM,F,AVGI,SD,CHIZA)
D0OTI=1,9

.

CALL VEGASB(NDIM,F,AVGI,DS,CHIZA)
1 CONTINUE
is equiva]ént-ta a single call to VEGAS with ITMX = 10, except that control
is returned to the calling program after each iteraction. Contro]
parameters (Section II.A) should not be modified after VEGAS {and before
VEGAS3) is called.
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D. Saving Grid Information

.

Complete information about the grid and about cumulative variables

is contained in common block BVEGZ:

COMMON/BVEG2/IT,NDO,SI,SWGT,SCHI,X1(50,10)

where
IT - number of jterations completed; )
NDO - number of subdivisions on an axis;
IT Sa
SI - 2——2
1 og4
1T 1
SWGT - I
1 oy
IT 52
SCHI - Z—%
1 O,
XI(I,d) -~ 1location of the I-th division on the J-th axis, normalized -

to lie between 0 and 1.

This information can be stored for later use. For example, 1f the contents
of BVEGZ have been stored on Fortran unit 9, VEGAS can be restarted as |
follows:

READ{9)IT,NDO,SI,SWGT,SCHI,XI

ITMX = IT + 5

NCALL = 50000

CALL VEGAS2(NDIM,FXN,AVGI,SD,CHI2A}

Here five additional iterations are combined with the earlier results to pro-

vide a new and hopefully improved estimate of the integral. If only the grid

is needed in future, NDO and XI(I,J) should be saved. The grid is then used }

as the starting point for the first iteration in VEGAS as follows {for example):

READ(Q)NDO,XI
ITMX = 5
NCALL = 1000

CALL VEGAS1{NDIM,FXN,AVGI,SD,CHI2A)

DR T VL R TRE D Tes A TEL AR R L LR Rl by L L L ik ol bk
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E. Computing Distributions; Integrating Vectors

" VEGAS can be:empfbyed to simultaneously compute any number of arbitrary

distributions of the sort

g.yl_ - [ d"x £(X)8(y-g(X))
0 .

where

- dI

I = J dy dy
. | : |
These are computed in the subprogram which generates the integrand (function
FXN in Section II.A; supplied by the user). With each integration point ‘
supplied to FXN, the probabilistic weight W, = WGT assigned that point is also |
supplied. These weights are defined so that the total integral is i

-
} W, f(xi) )

[y
R
Hit~12=

i
"To éStimateudI/dy'for different values y, the range of y = 9(;) (X in'Q) is
divided into M increments Ay; with centers y,. Then the contribution to I

toming-from increment ij is Jjust

e

By = L1 w fx)
‘ g{x)eay.

: J

where the sum is over all points Qg such that g(;f) lies within the incre-

ment. Then dI/dy at y = yj 1s approximated by

di{y. AT,
(yJ)_: i j=1 M
J : . dy - by S
g J
" As an example, consider the integral. )
: : I = [ dx J dy cos(x2+y)
. 0 4]

|
Py I]I'!]M'l!ﬂ!ll\IUWI'nlnﬂIM]IM'mmwrlllll|!rmummmmmmmmwmwmmmmwmmmm-mmu||n|r-v|n'llu|ﬂ| RULLL UL R R NUTTU L DR TR o s T B (O AT T LD S R S R TR SRt TR
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for which the distribution dI/dr with r° = x°+y? is desired. Variabler.
ranges from 0 to lfi_Dividing this range into ZC_equa} bi_n_s,.f(Arj = 1/20), aﬁ
appropriate code for the integrand is |

FUNCTION FXN(X,WGT)

.DOUBLE PRECISION X(Z),NGT,FXF,DI

iCOMMON DI(20) |

FXN = DOOS(X(1)**2 + X(2))

. :

DSQRT{X(T}**2 + X(2)**2)

fl

3= R*20 + 1

DI(J) = DI(J) + WGT*FXN
RETURN

END.

Upen completion of IT iterations, dI/dr at r = (J - 1/2)/20 is approximately

a1 b1y o
‘r—IT .5 J—],...,zo
VEGAS can also be used to simultaneously integrate any number of

functions in addition to f(?). The integral of any ?(?) is estimated by

Izdnx F(X) =
i

This sum can be accumulated in subprogram FXN in much the same manner’

.

it~ =

] We f(xi)7

distributians are accumulated.

-

A
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“F."Nodﬂfyihgﬂinterha1 Parameters

'Seme additionai’ parameters cohtrolling VEGAS are conta1ned 1n common

1

b]ock BVEG3,
COMMON/BVEG3/ALPH , NDMX ,MDS

where {default values are in ['3)2”

ALPH - controls the rate at which the grid is modified from

| iteration to iteration; décreasing ALPH slows modffication of
the grid (ALPH=0 implies no modification); [1.5];

NDMX - determines the maximum number of increments along each axis;
the actual number used varies between NDMX/2 and NDMX [50];

MDS = 0 VEGAS uses importance sampling only;

# 0 VEGAS uses Importance sampling + stratified samp11ng,
‘increments 'are concentrated either where the 1ntegrand is
largest in magnitude (MDS=1), or where.the-contr1but1on to thg
error is largest (MDS=41). The program chooses between these

two strateg1es--the latter being used only when

R 1/NDIM
[NCALL] NDMX . (1]

2 .
~The array sizes used in VEGAS éan be modified, if desired. The program,
as presented iq the Appendix, wi]] iqtegrate over as many as ten variables.
To iﬁcrease (br decrease) this maximum dimension, change every 10 to. the new';
maximum in each of the COMMON, DIMENSION and REAL statements. Similarly thg _:

maximum number of increments (NDMX) can be increased beyond 50 by replacing

50 in the COMMON/BVEG2/ and DIMENSION statements. Note however that

increasing NDMX beyond 50 rarely results in significant gains in accuracy.

g
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ITI. Interpreting VEGAS

When the algorithm is working well, Sz o (i.e., AVGI#SD) is a reliable

estimate of the integral (Eq. (7)). However in certain circumstances care

is required in interpreting output from VEGAS. Among the more common situa-

tions calling for extra care are the following:

a) |Sa[ grows steadily from iteration to iteration with the leﬁof increasing

b) .

_overcorrects the grid for a sharp narrow peak in the integfand. *Tﬁenjla,:ﬂ“"

and much larger than one - If Sa grows by orders of magnitudé and fails

to level off, the integral is probably divergent. When the.ﬁa'tend;.to

a finite number, the integral may be finite but not square ihtegrab?e;

In thié\?ast case, the Su may tend to the exact answer, butjmhé error
estimates will be unreliable.

xz/dof (1.g., CHI2A, or 'CHI**2 PER IT'N') much larger tﬁan;bne.—

Different iterations are inconsistent, one with the otheru:iﬁenerh1}y?*5"" 
either NCALL must be increased or the integration,variab]eswtransformed

so as to smooth the integrand before VEGAS can be trusted._ However,.Wheh
the integrand has high narrow peaks, Sa and o, are sometimes #badly. qndgr- 

estimated in the earliest iterations, before the algorithm has*adapte&;f

If X?/dof is small when these iterations are omitted, then the estimate
S + o as determined from the later iterations alone is re1iabléi‘fVEGASl ;
can be employed to omit the early iterations when determining §, o and ;;:': |
x2 (see Section 11.C). _

Large oscillations in the grid spacings from iteration to iteratiom, . . |

frequently accompanied by large Xzfdof - Upon occasion, VEGAS bad1yT{iﬂﬁf”

if it continues to overcorrect for the overcorrections, the grid ean -~ .~

oscillate back and forth for several iterations. This prob]em'canfpe5f
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alieviated by reducing ALPH (Section I1.F), thereby requiring VEGAS to

be less precipitous in changing the grid, and further damp1ng any oscilla-
tions which do occur. ,
d);‘The.estimates“S repeatedly oscillate in sign - This u$ua11y
indicates that the integrand has two or more large cance111ng peaks _
(i.e., .[d X lf(x)] >> .!d X f(x)) The situation is improved by 1ncreasin
NCALL, or sometimes by transforming variables so that large cancelling |
peaks become small cancé11ing peaks (e.g., integration region can be
- folded over on 1tse1f so that much of the cancellation between peaks is |
- Tocal or point-wise). Needless to say, VEGAS cannot compute .[d X f(x) ‘
when Jdnx [f(?)[ == (e.g., principal value integrations, vee) 1
Aside from these specific problems, there is the general prbblem of ;
improving the estimate of the integral. Once the optimal'grid has been found !
by VEGAS, accuracy improves as the square root of the number of integration
points.. So increasing NCALL or ITMX will increase the accuracy of the est1mate:
As mentioned above, another procedure which frequently helps is to change inte-
gration variables so as to smooth out the integrand. The grid information
prlnted after each iteration can be used to 1ocate peaks in the 1ntegrand

and s1mp1e ‘transformations introduced to reduce them. For examp]e, the

replacement

1 1 '
J dx f(x) —+_[ dy-—st féX% _ B>
0 0 BT lyakB
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Appendix A.  FORTRAN Listing of VEGAS
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ELOCK DATA

KES DEFRULT FARAMETER ASZIIGHMENTS FOR YEGAS
IMPLICIT DOUELE PRECIZSIDM<A-H.O0-2>
COMMOM-BYEGLT #HCHLL » ITMXs MPENs MDEY s XL {102 » XU (10> s ACC

‘“UMHUH/EVEFE/ITsHDD;SI;SMET:SCHI:HI(Sﬂplﬂ)

B LM -

'éU

COMMONABYEGZ - ALFPH» NDMX s MDE
DATRH NCHLLfﬁﬂﬂGfsITMKKS/sHpRN/S/JHCC/—I.J!
KL 00O, 0.s0.50.90,20.50.50,50.7»
MU 1.91.901.02.0l.0l.s1lordalaslnsy
ALPHA1 .Sy NIIME-30-s MDE-1 7 s NIIEY # 5~ s
MIO<1-s XI<200#1, s ITAQ- s SIsSWETs SCHI-3Je0, »
END
SUEBRDUTINE YEGRZ CHDIMsFXMyAYEGI s SN CHICRD

EROUTINE PERFORMS NIOIM-DIMENSIONAL MONTE CRELD INTEG'N
~ BY G.P. LEPHGE SEPT 1976~ (REVYRUG 1979
— ALBORITHM DESCRIBED IN ! COMP PHYS 27192 (1978)

IMPLICIT DOUELE PRECIZRIONCA-H»DO-22

COMMON-BVEGL ~NCHLL s ITMY: NPRMxNDEY XL £102 » RU (1002 s RCC

COMMON-BYEGE-ITNDOsZ1s SWETs SCHIS X1 S0, 102

COMMOM-BYEGZS-ALPH NDMX« MDE

COMMOMN-BYEGA-CALLESTIsTEI

DIMENSION DCS0s 100 s DI CS0s 102 s XINCSOX s RSO DX 102 s IACIOD s
FEG{1 0 » DT (103 s 1100

FEAL RAMDC102

IATAH OMNEA1.~

ZERT CR>=DEURT (A

RLOG ¢H> =DLOG CAX

AEZ CRY=DLAE: A2

HOO=1
DO 1 J=1+NDIH

$T¢1s J3=0ME ' _ \

EMTRY YEGAS1 (NDIMs FXNsAVGIsSDs CHIZAD
= INITIALIZES CUMMULATIVE VYARIAELESs BUT NOT GRID

IT=0 :

EI=4.

EWaT=51

ECHI=:I -

EMTREY YEGRZZ (MDIMs FXMaAVGEIsSDsCHIZAD
- MO IMNITIRLIZATION
MID=MTIM >
Miz=1
IFMDELER, 0 &0 TD 4 _ .
Hiz= "HCHLL/E ree 1, HOIM '
MDDz
IF((Eﬁﬂr NMDMAY LT, D) &0 7O 2
MDE=-1

T o T AR~ THR I P 118 SO IR IO 1 RN 1L A RDD A1 A R 1 IR
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100

A

T

15D

T

ey

T e e . L I URTTR R st Tas MR L DU

22

HPE=NG-HDM~+1

MO=Mi>-NFG

HE=MFG+MD

K=HbDe+HNDIM

MFEFG=NCALL ~K

IFEHPG.LT. 22 NPG=D

CALLS=NPG+K

D=G=0OME NG
D%EF~uFHLL?¢DVh++HDIM)¢¢EfNPGfHPEffHPu—DHE}
#MNI=ND
NIM=HD-1
DeG=NEG+XNI

W AC=0ONE-CALLS
ng 3 J=1.MIINM : g
Dy =X )y =L CJ) o ‘ _ § .
AIRC=xIACeDx . D : o E '

REEINs PRESERVING EIN DENSITY

IF{HD.EG.NDOY GO TO B
RC=HE0.- %MD
Do ¥ Jd=1«M01IM
k=0
aAh=10,
DR=HHN
I=K
kK=k+1
DE=DFE+MNE
=0=%M
=1 K I
IFRC.ET.DREY &0 TO 4
I=I+1
ﬂc DRE-RC
AIMCIY=MN—-{MN-kOr DR
IF(I LT.NHEMY 0 TO S
IO & I=1:NHDM
BRICIs da=¥INCI2
=T (I 2 =0NHE
HIMI=MD

IF {NPRM.GE. 00 WRITE(NDE¥s2000 NDIM,CALLSs ITs ITMXsACCs NPRNs

1 HLPH;HDS:NB;(XLiJ)sEU(J):4=IsNDIH}

EMHTREY YEGAIZMDIM:FXN» HVbI:SD:CHIEH)
- MRIN INTEGRATIONM LODP -

IT=1T7T+1

TI=1i, s

T=ZI=TI o ‘ T

Il 10 Jd=1.NHDIM T

EG{Jr=1

DO 18 I=1sND

Dels 10=T1

DICT» Ja=T1

ITTEAURT WL CTE ARG VWA O TN e R R R TR P R Y e e

(v Ruln L 8 dLinl L i
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FE=0.

. F2B=FBE
k=0
K=K+1
CALL RANDACNDIM:RANID
WET=XJAC
no 15 J=1>MBIM
BN= (KB (12— PHHD(J3)0DKE+DNE
IR CD =¥HN
IFCIACI .ET. 10 B0 TO 12
BO=KIKIACI s 02
RC={X¥N-TR L > »X0
0 TO 14
#O0=XI{IACH s D-KICIALD -1 .02
FC=XI (IAC—1: J2+ CXN-IRA D> ex0
B =EL LD +RC DX (I
WET=hWET+x0OexND

F=W5T

FFeFXN (s WGTY

Fa=FeF

FE=FB+F

FeR=FEE+F2

DO 16 J=1sHDIM
DICIACH s Jr=D1 CTACH s I +F

IF (MDE.GE. 07 DCIRCIY s =D (IR CIY 3 ) +FE
IF¢K.LT.NPG> GO TO 12

F2R=SLET (FZE+NPG2
FER=<FZE-FE)» (FZE+FE2
TI=TI+FE

TzI=TZI+FER

IFMDS.6E. 0y GO TO 18
o 17 J 1aNDIM
DkIH(l‘vJ)_DfIH(1‘!J}+FEE
K=NIIM
K6 (K =MOD (ki (K2 a NG +1
IF Kz CkD WNEL 12 ED TO 11
K=K~1 '

IF(K GT.0» EU TU 13

FDHPUTE FINAL RESULTE FOR THIS ITEFHTIDH
TEI=TZI+IVEG
TIZ=Ti+T1
WET=IIMNE~TE]I
SI=2I4+TIeWiaT
ZhGT=SWST+WGT
ECHI=SCHI+TIZ#WET
AVEI=S1 - -SWMET :
EHIEH&(ECﬁI—SI¢HVEI)f{IT~.9?Q9}
ZD=S0RT (BHE- ST

LU SRR T LA S L L VLR VLL T ab SO R T L]

LETEL STy T
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IF(MPRN.LT.0> 50 TO 2t
TSI=S0RT (TZD)

WREITECNDEY.201) rTwTIQTSIsHVGI:SDsCHIEH

IF (HPRN.ER. O G0O'TO 21
DO 20 J=1,NDIM

WRITE (NDEYs 202> JstI(I D DICIs s I= 1+HPPHKEsﬂBsHPRH}

REFINE GRID

DO 22 J=1sNDIM
®O=D{1+. 1>

HM=D 2 1)

Dol 2= CA0+KNY 72,
DT {Jr=D41s.0>

0 22 I=2:NDM
DX 20 =x0+4N

sO=¥MH

BH=DC(I4+1, 02

Dol D=CD(Is J2 45N -3,
DTC=DTL{O4+D Iy I
DeMDs 1 = {XN+X02 2.
DT (=0T (42 +D CND» 12

O 28 J=1.HDINM

RC=0.

0 24 I=1.MD

Ella=1.

IFDCI= 2. LE. 0. 60 TO 24
AO=DT C D I 12

R{Iy=9{ Ci0-OMEY #x0-AL0G X022 ¢ +ALPH
RC=RC+R (I

" RC=RCAXHI

K=0
KM=0.,

DIR=%N

I=k

K=H+1

DR=DR+R K>

%O=XN

KMN=XT K J7

IFCRC.GT.IfY GO TO 25
I=I+1 -

L[FR=DR-RC

MIN (13 =KN— (XN=XT) #DRAR (KD

CIFCILLT.NDM> GO TO 26

0 2¥ I=1:NDM
ALLI» S0 =XINCI}

ra I eMDs J2 =0HE

. FORMAT ¢~35H INFUT PARAMETERS FOR VEGAS:

1

24

R

IFCIT.LT.ITMHE. AND. ACCSABS (AYGID LLT.SD 60 TO 9

NDIM=I=s 8H

<28Ka5H  IT=I5:7H ITMX=IS5-28x:6H ACC=RS,2

NCALL=FE. 0
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2 /28Xs7H NPRN=IZs7H ALFH=F5.2-28XsEH MOS=13,cH MD=I4
3 ,B28XI10H XLy XU =(T40:2H¢ G12.653H s G12.6s8H >3 ,
1+ FORMAT (- s/21H INTEGRATION EY YEGHAS- ~ 14H ITERATION NO.IZ.
i1 14H: INTEGRAL =G14.8-21Xs 10HSTD TEY =610.4~
12 34H ACCUMULATED RESULTS: INTEGRAL =G14.8~ o :
.2 24K+ 10HSTD DEV =G10.4-24%y 17THCHI¢+2 PER IT“N =510.4>

na
o=l

z0c ¢ FORMAT (- 15H DATAR FOR AXIS I2-25H . % 2 DELTR I .
i1 24H ¥ DELTR I »18H » DELTA I
:E < C1H F?.E:1%!511.4!5K!F?.631X5611.455H9F?.6:1N5511.4))
i RETURH
" ENMD .
SUBROUTINE RAMDA cN» RANDD '
T SUBROUTINE GENEREATES UNIFORMLY DISTRIBUTED RANDOM MO E X(I)sl=1sﬂ
DIMEMSION RAND cM3 C
e Do 1 I=1,H
1 EAND CID> =RAN (12345467
RETUREN
EMND
]
i
|
|
§
é
k

B bl b it i sl i sl p U DRI RRIRE R T 2 L T, R TN DT TIAR TIPSR T 4 W e "
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Appendix B. An_Example - .. . AR

In this Appendix, the use of VEGAS is illustrated in the computation of

1 2
100 1 -—100(x12+ (x,-1)%)
I=— dx1 =

o |t

- dx2 e
0 1

The integrand's subprogram is

FUNCTION F(X,WGT) . L ey N
DOUBLE PRECISION X{2),WGT,F |

F = DEXP(-100.%(X(1)**2 + (X(2) - 1)**2))*100./3. 141592654 00 ..
RETURN

END

The calling program is

DOUBLE PRECISION XL,XU,ACC,F,AVGI,SD,CHIZA
COMMON/BVEGT /NCALL , ITMX,NPRN,NDEV, XL{10),XU(10),ACC
EXTERNAL F

XL(2) = -

CALL VEGAS(2,F,AVGI,SD,CHI2A)

RETURN

END

Most of the cgntrol parameters have their default values in this example.
Thus VEGAS will estimate the integral in five iterations using approximately
5000 evaluations of the integrand per iteration (in fact 4802 are used per .
iteration). The output from VEGAS is presented in the succeeding pages.

Since NPRN=5, information for only one out of every five axis subdivisions_

is printed - i.e., for only ten increments on each axis (while in fact VEGAS

used ND=43 increments per axis). The results returned to the calling program'

were
AVGI = .249984
SD = .000059
CHI2A = 1.116

i i U |mf!mm1ﬂﬂlmmlr\w“ ‘N’!ITW'MWWH'WW upame o

AT TIPS I R P T
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and thus the integral is estimated to be

.24998 + .00006 . with 68% confidence

+

-.00012 with 95% confidence

... etc.

As the leiteration is 1.1, the various iterations are consistent with
each other and thus the error estimates are probably statistically

meaningful.
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| INTEGRRTION EY VEGHRD

CITERATION NO. 1t
i ' 2Th
ACCUMULATER RESULTS:

He I H
ELTR I
. Ss52an-01

fi, 2957005

. 9570~12

O, GEhOoh+ o0

TH Pelz 2
T DELTR I

e {3 Ft, oD 00n
O, NOoOnD+0n

0, 15370-204

LR NEEE TR R [

0. 1E9sl-01

o

i b
!
i
i

i ons AR g YT TR 1 IR R 117 B ST 8 RO e

 INPUT PRRAMETERS FOR VEGH

|
.

INTERREAL

heEW

INTEGRRL .
ETR DBEW

CHIwe2

=4 e

L T

12
LAE

442 0. 17e2D-01
; 2

28

NDIM= 2 HCALL=
I1T= 0 ITHX=
ACC=-,1000+01
MPEN= S5 HALPH= 1.30
MbE= -1 MD= 43
CALsRUD= ¢ .000000D+00
¢ — 1000GO0+01 s

S

= ,2R08RZ54n+00
= I—-az

250
=

It

PER ITHN = . 00anhi+an

-
alte

BELTH I

1]
o L0

03 a3 T

A

"'JI E‘. Ja

W
fu
=
o
m
lj‘:
i
m
I

el ThR I =

49 0, DOOONEGH L FeddT
=71 . anoan+ 0 LaR051
24 O, i4z280-1z2 LEZETR

RHESE Y
i
TS
L 1ESIR
.
L T

ey i)

‘‘‘‘‘‘

L) b=
2N onn

T e

T 0

£

L 100000D+01

.100000D+01"

Evow B oo B e
s 4 u

¥ T

ite

s

DELTH

I

SEAan—-02
1171012

DELTH

EERED-T0

I

goonD+on
QoD+ 00

1131 D-

IELTH
S N e
S27E -
=7 -

ns

e

LR |
KNI

or
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.9%5991 0. 22440~ 02 . 245254 0. 3144T0~02 255225 n.4511D-02
LFEGITE DLSREZD-05 .IF2E2Y  G.Ti1eD-0p LEEZ203Y (L. 10928D-01
LIRS G, 12328D-01

I:J':I

IHTEGPHTIUH BY VEGA

It

ITEERTION HO. 3@ INTEGRAL LESHLEETIDA0N

! ETD DEY = (106830-03%
FCCUHMULATED RESULTS: INTEGREL C2SO00ITED+O0

: ZTh DEY 25581004
CHI#«Z PER IT'M = .20570+01

il

.

DATA FOR AHIZ 1

P IELTA 1 E DELTHR I = TELTHR 1
L DOES4E 0, 2037002 LDIVESTY DLE188D-02 O3ETTE 0L E344D-02
.uiiun. . 2eoil-0z LFLO02E 0, L2240 02 OR0364 0, TEEED-02
,1ﬁES?? ”.JBHDB~HL L134260 L, ZR1eT-02 Llegivs 0L 1434008
,_.]","?"’Ir_“ =
REIE B
DELTH I b DELTR 1 y IELTR I
".iqun—: LIYEVIL G, 17300 LHISHEL G.3212D-0F
- AR4ET—- 07 LI591IFI OLS1E8D-08 CFETFEOLZ 0. 5491 02
HOEEDE 1, 7 nz L2E34TE R V211 D05

Pulat ] = AT e
¢ L S e N = b g ~ Yt U.(Jghﬂ—
o5y

FLOsn-1

Y

ITEGERL

Tl{f‘.!
s Sy

BETILTE: IHTEGRAL

DELTHR 1
SHid R N I
=t gLeleEh-nz
, ST . T R L e
i
;
Ny

(LARLETURT NUNE IR T TR TR IPYL t en
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| INTESRATION BY VEGAS

|

iITERﬂTIDH NEO. S IMNTEGRAL L 25000356D4+ 00

! 3TD DEY . 11250-03
ACCUMULATED RESULTS: INTEGRAL = .249923920+00

i 3TDh DEY = [ 592FD-04

| CHi++2Z PER ITN = .1118D+01

!DRTH FBRE A<IZ 1
) DELTAH I
003114 4, SFEE D02 .
|P4 111 0.8RRD-G2
 BETRE 0, 4T72ED-0F

LEms1las 00777 0-03

DELTH I = DELTH 1
Q. $58350—-02 LOEESES 0 G,31910-02
. 5Re30- 02 LAFFFIE O RLS409D-02
H. 3457 D-02 LAS54158 001942002

'l [J

LDELTAH I “ DELTH I R DELTH I

T, ann0n+an CEDIOFE 0. EEd4T-03 LFOENEG 0. 12130-02
i LEEZIG0 0LS01ET-0S e LR L S T o oy | o
SFEO0IE 0TSO0 02 LREZILY 0L 8516008
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