#+PROPERTY: header-args :exports both :output-dir results * Init ** Required Modules #+NAME: e988e3f2-ad1f-49a3-ad60-bedba3863283 #+begin_src ipython :session :exports both import numpy as np import matplotlib.pyplot as plt #+end_src #+RESULTS: e988e3f2-ad1f-49a3-ad60-bedba3863283 ** Utilities #+NAME: 53548778-a4c1-461a-9b1f-0f401df12b08 #+BEGIN_SRC ipython :session :exports both %run ../utility.py #+END_SRC #+RESULTS: 53548778-a4c1-461a-9b1f-0f401df12b08 * Implementation #+NAME: 777a013b-6c20-44bd-b58b-6a7690c21c0e #+BEGIN_SRC ipython :session :exports both :results raw drawer :exports code :tangle tangled/xs.py """ Implementation of the analytical cross section for q q_bar -> gamma gamma Author: Valentin Boettcher """ import numpy as np from scipy.constants import alpha # NOTE: a more elegant solution would be a decorator def energy_factor(charge, esp): """ Calculates the factor common to all other values in this module Arguments: esp -- center of momentum energy in GeV charge -- charge of the particle in units of the elementary charge """ return charge**4*(alpha/esp)**2/6 def diff_xs(θ, charge, esp): """ Calculates the differential cross section as a function of the azimuth angle θ in units of 1/GeV². Arguments: θ -- azimuth angle esp -- center of momentum energy in GeV charge -- charge of the particle in units of the elementary charge """ f = energy_factor(charge, esp) return f*((np.cos(θ)**+1)/np.sin(θ)**2) def diff_xs_eta(η, charge, esp): """ Calculates the differential cross section as a function of the pseudo rapidity of the photons in units of 1/GeV^2. Arguments: η -- pseudo rapidity esp -- center of momentum energy in GeV charge -- charge of the particle in units of the elementary charge """ f = energy_factor(charge, esp) return f*(2*np.cosh(η)**2 - 1) def total_xs_eta(η, charge, esp): """ Calculates the total cross section as a function of the pseudo rapidity of the photons in units of 1/GeV^2. If the rapditiy is specified as a tuple, it is interpreted as an interval. Otherwise the interval [-η, η] will be used. Arguments: η -- pseudo rapidity (tuple or number) esp -- center of momentum energy in GeV charge -- charge of the particle in units of the elementar charge """ f = energy_factor(charge, esp) if not isinstance(η, tuple): η = (-η, η) if len(η) != 2: raise ValueError('Invalid η cut.') def F(x): return np.tanh(x) - 2*x return 2*np.pi*f*(F(η[0]) - F(η[1])) #+END_SRC #+RESULTS: 777a013b-6c20-44bd-b58b-6a7690c21c0e :RESULTS: :END: * Calculations ** XS qq -> gamma gamma First, set up the input parameters. #+NAME: 7e62918a-2935-41ac-94e0-f0e7c3af8e0d #+BEGIN_SRC ipython :session :exports both :results raw drawer η = 2.5 charge = 1/3 esp = 200 # GeV #+END_SRC #+RESULTS: 7e62918a-2935-41ac-94e0-f0e7c3af8e0d :RESULTS: :END: And now calculate the cross section in picobarn. #+NAME: cf853fb6-d338-482e-bc55-bd9f8e796495 #+BEGIN_SRC ipython :session :exports both :results drawer output file :file xs.tex xs_gev = total_xs_eta(η, charge, esp) xs_pb = gev_to_pb(xs_gev) print(tex_value(xs_pb, unit=r'\pico\barn', prefix=r'\sigma = ', prec=5)) #+END_SRC #+RESULTS: cf853fb6-d338-482e-bc55-bd9f8e796495 :RESULTS: [[file:results/xs.tex]] :END: Compared to sherpa, it's pretty close. #+NAME: 81b5ed93-0312-45dc-beec-e2ba92e22626 #+BEGIN_SRC ipython :session :exports both :results raw drawer sherpa = 0.0538009 xs_pb/sherpa #+END_SRC #+RESULTS: 81b5ed93-0312-45dc-beec-e2ba92e22626 :RESULTS: 0.9998585425137037 :END: I had to set the runcard option ~EW_SCHEME: alpha0~ to use the pure QED coupling constant.