mirror of
https://github.com/vale981/bachelor_thesis
synced 2025-03-05 09:31:42 -05:00
add the beginning of the cross section calculation
This commit is contained in:
parent
c0a0078633
commit
f1c0541490
9 changed files with 293 additions and 11 deletions
|
@ -1,6 +1,6 @@
|
||||||
\documentclass[fontsize=12pt,paper=a4,open=any,parskip=half,
|
\documentclass[fontsize=12pt,paper=a4,open=any,parskip=half,
|
||||||
twoside=false,toc=listof,toc=bibliography,fleqn,leqno,
|
twoside=false,toc=listof,toc=bibliography,fleqn,leqno,
|
||||||
captions=nooneline,captions=tableabove,german]{scrbook}
|
captions=nooneline,captions=tableabove,english]{scrbook}
|
||||||
|
|
||||||
\usepackage{hirostyle}
|
\usepackage{hirostyle}
|
||||||
\addbibresource{thesis.bib}
|
\addbibresource{thesis.bib}
|
||||||
|
@ -11,6 +11,9 @@ captions=nooneline,captions=tableabove,german]{scrbook}
|
||||||
\begin{document}
|
\begin{document}
|
||||||
\input{./tex/title.tex}
|
\input{./tex/title.tex}
|
||||||
|
|
||||||
|
\input{./tex/qqgammagamma.tex}
|
||||||
|
\input{./tex/qqgammagamma/calculation.tex}
|
||||||
|
|
||||||
\tableofcontents
|
\tableofcontents
|
||||||
\listoffigures
|
\listoffigures
|
||||||
\listoftables
|
\listoftables
|
||||||
|
|
|
@ -2,15 +2,68 @@
|
||||||
\usepackage[utf8]{inputenc} % load early
|
\usepackage[utf8]{inputenc} % load early
|
||||||
\usepackage[T1]{fontenc}
|
\usepackage[T1]{fontenc}
|
||||||
% load early
|
% load early
|
||||||
\usepackage[ngerman]{babel}
|
\usepackage[english]{babel}
|
||||||
\usepackage[autostyle=true]{csquotes}
|
\usepackage[autostyle=true]{csquotes}
|
||||||
\usepackage{palatino}
|
\usepackage{newpxtext,newpxmath}
|
||||||
\usepackage{physics}
|
\usepackage{physics}
|
||||||
\usepackage{graphicx, booktabs, float, scrhack}
|
\usepackage{graphicx, booktabs, float, scrhack}
|
||||||
\usepackage{amsmath,amssymb}
|
\usepackage{amsmath,amssymb}
|
||||||
\usepackage[automark]{scrlayer-scrpage}
|
\usepackage[automark]{scrlayer-scrpage}
|
||||||
\usepackage[backend=biber,style=verbose,sortcase=false,
|
\usepackage[backend=biber,style=verbose,sortcase=false,language=english]{biblatex}
|
||||||
language=british]{biblatex}
|
|
||||||
\PassOptionsToPackage{hyphens}{url}
|
\PassOptionsToPackage{hyphens}{url}
|
||||||
|
\usepackage{siunitx}
|
||||||
|
\usepackage[pdfencoding=auto]{hyperref} % load late
|
||||||
|
% \usepackage[activate={true,nocompatibility},final,tracking=true,spacing=true,factor=1100,stretch=10,shrink=10]{microtype}
|
||||||
|
\usepackage{tikz-feynman}
|
||||||
|
\usepackage{caption}
|
||||||
|
\usepackage[list=true, font=small,
|
||||||
|
labelformat=brace, position=top]{subcaption}
|
||||||
|
\usepackage{tikz}
|
||||||
|
\usepackage{wrapfig}
|
||||||
|
\usepackage{slashed}
|
||||||
|
|
||||||
\usepackage[hidelinks]{hyperref} % load late
|
%% Tikz
|
||||||
|
\usetikzlibrary{arrows,shapes,angles,quotes,arrows.meta}
|
||||||
|
|
||||||
|
%% Hyperref
|
||||||
|
\hypersetup{
|
||||||
|
colorlinks,
|
||||||
|
linkcolor={blue!50!black},
|
||||||
|
citecolor={red!50!black},
|
||||||
|
urlcolor={green!80!black}
|
||||||
|
}
|
||||||
|
|
||||||
|
%% Captions
|
||||||
|
\captionsetup{justification=centering}
|
||||||
|
|
||||||
|
%% Labels
|
||||||
|
\labelformat{section}{section #1}
|
||||||
|
\labelformat{figure}{figure #1}
|
||||||
|
\labelformat{table}{table #1}
|
||||||
|
|
||||||
|
% Macros
|
||||||
|
|
||||||
|
%% qqgg
|
||||||
|
\newcommand{\qqgg}[0]{q\bar{q}\rightarrow\gamma\gamma}
|
||||||
|
|
||||||
|
%% Impulses and Polarization Vectors convenience
|
||||||
|
\DeclareMathOperator{\ps}{\slashed{p}}
|
||||||
|
|
||||||
|
\DeclareMathOperator{\pe}{\varepsilon}
|
||||||
|
\DeclareMathOperator{\pes}{\slashed{\pe}}
|
||||||
|
|
||||||
|
\DeclareMathOperator{\pse}{\varepsilon^{*}}
|
||||||
|
\DeclareMathOperator{\pses}{\slashed{\pe}^{*}}
|
||||||
|
|
||||||
|
%% Spinor convenience
|
||||||
|
\DeclareMathOperator{\us}{u}
|
||||||
|
\DeclareMathOperator{\usb}{\bar{u}}
|
||||||
|
|
||||||
|
\DeclareMathOperator{\vs}{v}
|
||||||
|
\DeclareMathOperator{\vsb}{\bar{v}}
|
||||||
|
|
||||||
|
%% Fast Slash
|
||||||
|
\let\sl\slashed
|
||||||
|
|
||||||
|
%% Notes on Equations
|
||||||
|
\newcommand{\shorteqnote}[1]{ & & \text{\small\llap{#1}}}
|
||||||
|
|
|
@ -1,4 +1,4 @@
|
||||||
LATEXMKFLAGS=-pdfxe -interaction=nonstopmode
|
LATEXMKFLAGS=-pdflua -interaction=nonstopmode
|
||||||
OUTDIR=build
|
OUTDIR=build
|
||||||
|
|
||||||
thesis: document.tex
|
thesis: document.tex
|
||||||
|
|
55
latex/tex/qqgammagamma.tex
Normal file
55
latex/tex/qqgammagamma.tex
Normal file
|
@ -0,0 +1,55 @@
|
||||||
|
\chapter{Quark-Antiquark Annihilation into
|
||||||
|
two Photons}%
|
||||||
|
\label{sec:qqgg}
|
||||||
|
|
||||||
|
Consider the scattering reaction \(\qqgg\). The first order expansion
|
||||||
|
of this process is described by the Feynman diagrams
|
||||||
|
in~\ref{fig:qqggfeyn}. Because there is only QED involved, the color
|
||||||
|
degrees of freedom average out and will not be considered henceforth.
|
||||||
|
Furthermore a high energy regime will be supposed and therefor masses
|
||||||
|
will be neglected.
|
||||||
|
|
||||||
|
\begin{figure}[h]
|
||||||
|
\centering
|
||||||
|
\begin{subfigure}[c]{.4\textwidth}
|
||||||
|
\centering
|
||||||
|
\begin{tikzpicture}
|
||||||
|
\begin{feynman}
|
||||||
|
\diagram [small,horizontal=i2 to a] {
|
||||||
|
i2 [particle=\(q\)] -- [fermion, momentum=\(p_2\)] a --
|
||||||
|
[fermion, reversed momentum=\(q\)] b,
|
||||||
|
i1 [particle=\(\bar{q}\)] -- [anti fermion, momentum'=\(p_1\)] b,
|
||||||
|
i2 -- [opacity=0] i1,
|
||||||
|
a -- [photon, momentum=\(p_3\)] f1 [particle=\(\gamma\)],
|
||||||
|
b -- [photon, momentum'=\(p_4\)] f2 [particle=\(\gamma\)],
|
||||||
|
f1 -- [opacity=0] f2,
|
||||||
|
};
|
||||||
|
\end{feynman}
|
||||||
|
\end{tikzpicture}
|
||||||
|
\subcaption{u channel}
|
||||||
|
\end{subfigure}
|
||||||
|
\begin{subfigure}[c]{.4\textwidth}
|
||||||
|
\centering
|
||||||
|
\begin{tikzpicture}
|
||||||
|
\begin{feynman}
|
||||||
|
\diagram [small,horizontal=i2 to a] {
|
||||||
|
i2 [particle=\(q\)] -- [fermion, momentum=\(p_2\)] a --
|
||||||
|
[fermion, reversed momentum'=\(q\)] b,
|
||||||
|
i1 [particle=\(\bar{q}\)] -- [anti fermion, momentum'=\(p_1\)] b,
|
||||||
|
i2 -- [opacity=0] i1,
|
||||||
|
a -- [draw=none] f2 [particle=\(\gamma\)],
|
||||||
|
b -- [draw=none] f1 [particle=\(\gamma\)],
|
||||||
|
f1 -- [opacity=0] f2,
|
||||||
|
};
|
||||||
|
\diagram* {
|
||||||
|
(a) -- [photon] (f1),
|
||||||
|
(b) -- [photon] (f2),
|
||||||
|
};
|
||||||
|
\end{feynman}
|
||||||
|
\end{tikzpicture}
|
||||||
|
\subcaption{\label{fig:qqggfeyn2}t channel}
|
||||||
|
\end{subfigure}
|
||||||
|
|
||||||
|
\caption{First order diagrams for \(\qqgg\).}%
|
||||||
|
\label{fig:qqggfeyn}
|
||||||
|
\end{figure}
|
9
latex/tex/qqgammagamma/calculation.rip
Normal file
9
latex/tex/qqgammagamma/calculation.rip
Normal file
|
@ -0,0 +1,9 @@
|
||||||
|
% -*- mode: reftex-index-phrases; TeX-master: "calculation.tex" -*-
|
||||||
|
% Key Macro Format Repeat
|
||||||
|
%---------------------------------------------------------------------
|
||||||
|
>>>INDEX_MACRO_DEFINITION: i \index{%s} t
|
||||||
|
>>>INDEX_MACRO_DEFINITION: g \glossary{%s} t
|
||||||
|
%---------------------------------------------------------------------
|
||||||
|
|
||||||
|
|
||||||
|
|
142
latex/tex/qqgammagamma/calculation.tex
Normal file
142
latex/tex/qqgammagamma/calculation.tex
Normal file
|
@ -0,0 +1,142 @@
|
||||||
|
\section{Calulation of the Cross Section to first Order}%
|
||||||
|
\label{sec:qqggcalc}
|
||||||
|
|
||||||
|
After labeling the incoming quarks and outcoming photons, as well as
|
||||||
|
the impulses according to~\ref{fig:qqggfeyn}, the feynman rules yield
|
||||||
|
the matrix elements in~\eqref{eq:matel}. The matrix element
|
||||||
|
for~\ref{fig:qqggfeyn2} is obtained by simply renaming
|
||||||
|
\(3\leftrightarrow 4\).
|
||||||
|
|
||||||
|
\begin{align}
|
||||||
|
\label{eq:matel}
|
||||||
|
\mathcal{M}_1 &= \frac{(gQ)^2}{\qty(p_1 - p_4)^2}\vsb(1)\pses(4)(\ps_1 -
|
||||||
|
\ps_4)\pses(3)\us(2)\\
|
||||||
|
\mathcal{M}_2 &= \frac{(gQ)^2}{\qty(p_1 - p_4)^2}\vsb(1)\pses(3)(\ps_1 - \ps_3)\pses(4)\us(2)
|
||||||
|
\end{align}
|
||||||
|
|
||||||
|
\begin{wrapfigure}{R}{0.4\textwidth}
|
||||||
|
\centering
|
||||||
|
\begin{tikzpicture}
|
||||||
|
\coordinate (origin) at (0,0);
|
||||||
|
|
||||||
|
\draw[-Latex] (origin) -- (-2,0) node[left] {\(p_3\)};
|
||||||
|
\draw[-Latex] (origin) -- (2,0) coordinate (p4) node[right] {\(p_4\)};
|
||||||
|
\draw[Latex-,rotate=40] (origin) -- (2,0) coordinate (p2) node[right] {\(p_2\)};
|
||||||
|
\draw[Latex-,rotate=40] (origin) -- (-2,0) node[left] {\(p_1\)};
|
||||||
|
\draw[fill=black] (origin) circle (.03);
|
||||||
|
|
||||||
|
\draw pic["$\Theta$", draw=black, <->, angle eccentricity=1.2, angle radius=1cm] {angle=p4--origin--p2};
|
||||||
|
\end{tikzpicture}
|
||||||
|
\caption{\label{fig:qqimpulses} Momentum diagram for the proces
|
||||||
|
\(\qqgg\) in the massles limit.}
|
||||||
|
\end{wrapfigure}
|
||||||
|
|
||||||
|
|
||||||
|
To simplify notation, the some shorthands are intruduced
|
||||||
|
in~\eqref{eq:scshort}.
|
||||||
|
\begin{align}
|
||||||
|
\label{eq:scshort}
|
||||||
|
s(x) &= \sin(x) & c(x) &= \cos(x) \\ s'(x) &= \sin(\frac{x}{2}) & c'(x) &= \cos(\frac{x}{2})
|
||||||
|
\end{align}
|
||||||
|
|
||||||
|
All calculations are made in the center of momentum frame unless
|
||||||
|
stated otherwise. The impulses used in the center of momentum frame
|
||||||
|
are concretised to in~\eqref{eq:pchoice} as well
|
||||||
|
as~\ref{fig:qqimpulses}. Note that the photons are aligned to the
|
||||||
|
z-axis as this led to a simple choice for the polarization vectors,
|
||||||
|
when calculating the matrix element directly. Here casimir's trick is
|
||||||
|
being used but the labeling was kept.
|
||||||
|
|
||||||
|
|
||||||
|
\begin{align}
|
||||||
|
\label{eq:pchoice}
|
||||||
|
p_1&=p\cdot\mqty(1 \\ s \\ 0 \\ c)
|
||||||
|
& p_2&=p\cdot\mqty(1 \\ -s \\ 0 \\ -c)
|
||||||
|
& p_3&=p\cdot\mqty(1 \\ 0 \\ 0 \\ -1)
|
||||||
|
& p_4&=p\cdot\mqty(1 \\ 0 \\ 0 \\ 1)
|
||||||
|
\end{align}
|
||||||
|
|
||||||
|
Now observe that \((p_1-p_4)^2=-4p^2s'^2\) and
|
||||||
|
\((p_1-p_3)^2=-4p^2c'^2\) (Minkowski metric) and define \(\Gamma_1\)
|
||||||
|
and \(\Gamma_1\) as in~\eqref{eq:gammadef}.
|
||||||
|
|
||||||
|
\begin{align}
|
||||||
|
\label{eq:gammadef}
|
||||||
|
\Gamma_1 &= \pses(4)(\ps_1 - \ps_4)\pses(3) &
|
||||||
|
\Gamma_2 &= \pses(3)(\ps_1 - \ps_3)\pses(4)
|
||||||
|
\end{align}
|
||||||
|
|
||||||
|
The total matrix element (the minus sign has been dropped) is given in~\eqref{eq:totalm}.
|
||||||
|
\begin{equation}
|
||||||
|
\label{eq:totalm}
|
||||||
|
\mathcal{M} = \mathcal{M}_1 + \mathcal{M}_2 = \frac{(gQ)^2}{\qty(2p)^2}\vsb(1)\qty(\frac{\Gamma_1}{s'^2}+\frac{\Gamma_2}{c'^2})\us(2)
|
||||||
|
\end{equation}
|
||||||
|
|
||||||
|
To obtain an experimentally verifiable cross section the absolute square of the
|
||||||
|
matrix element will averaged over incoming helicities and summed over
|
||||||
|
all photon polarisations. Using casimir's trick, the averaging can be
|
||||||
|
simplified to the calculation of a trace as in where \(s_i\) are
|
||||||
|
helicities, \(\lambda_i\) are the polarisations and \(\bar{\Gamma_i}=\gamma^0\Gamma^\dagger_i\gamma^0\).
|
||||||
|
|
||||||
|
\begin{equation}
|
||||||
|
\label{eq:averagedm}
|
||||||
|
\langle\mathcal{M}\rangle = \frac{1}{4}\sum_{s_1 s_2}\sum_{\lambda_1
|
||||||
|
\lambda_2} \abs{\mathcal{M}}^2=\frac{1}{4}\sum_{\lambda_1
|
||||||
|
\lambda_2}\tr[\qty(\frac{\Gamma_1}{s'^2}+\frac{\Gamma_2}{c'^2})
|
||||||
|
\ps_2\qty(\frac{\bar{\Gamma}_1}{s'^2}+\frac{\bar{\Gamma}_2}{c'^2})\ps_1]
|
||||||
|
\end{equation}
|
||||||
|
|
||||||
|
With the definition \(a_1=4,b_1=3,a_2=3,b_2=4\) the \(\Gamma\)
|
||||||
|
matrices and their bared variants can be written as in~\eqref{eq:shortgamma}.
|
||||||
|
|
||||||
|
\begin{align}
|
||||||
|
\label{eq:shortgamma}
|
||||||
|
\Gamma_i &= \pses(a_i)(\ps_1 - \ps(a_i))\pses(b_i) & \bar{\Gamma}_i &= \pes(b_i)(\ps_1 - \ps(a_i))\pes(a_i)
|
||||||
|
\end{align}
|
||||||
|
|
||||||
|
To work out~\eqref{eq:averagedm} one must evaluate terms of the
|
||||||
|
form~\eqref{eq:gbricks}.
|
||||||
|
|
||||||
|
\begin{align}
|
||||||
|
\label{eq:gbricks}
|
||||||
|
\Gamma_{ij} = \sum_{\lambda_1\lambda_2} \tr(\Gamma_i\ps_2\Gamma_j\ps_1) =
|
||||||
|
\sum_{\lambda_1\lambda_2} \tr[\pses(a_i)(\ps_1-\ps(a_i))\pses(b_i)\ps_2\pes(b_i)(\ps_1 - \ps(a_i))\pes(a_i)\ps_1]
|
||||||
|
\end{align}
|
||||||
|
|
||||||
|
The sum over plarisation can be simplified by utilizing the
|
||||||
|
completeness relation for polarisation vectors for \emph{external}
|
||||||
|
photons~\eqref{eq:polcomp}.
|
||||||
|
|
||||||
|
\begin{equation}
|
||||||
|
\label{eq:polcomp}
|
||||||
|
\sum_{\lambda=1}^{2}\pe_{(\lambda)}^\mu\pe_{(\lambda)}^{*\nu} = -g^{\mu\nu}
|
||||||
|
\end{equation}
|
||||||
|
|
||||||
|
For \(i=j\) and by utilizing \(\gamma_\mu\sl{a}\gamma^\mu=-2\sl{a}\),
|
||||||
|
\(\gamma_\mu\sl{a}\sl{b}\sl{c}\gamma^\mu=-2\sl{c}\sl{b}\sl{a}\) as
|
||||||
|
well as \(\ps_i\ps_i=p_i\cdot p_i = 0\) and the well known trace
|
||||||
|
theorems for the gamma matrices~\eqref{eq:gii} follows.
|
||||||
|
\begin{equation}
|
||||||
|
\label{eq:gii}
|
||||||
|
\begin{split}
|
||||||
|
\Gamma_{ii} &=
|
||||||
|
\tr[\gamma_\mu(\ps_1-\ps(a_i))\gamma_\nu\ps_2\gamma^\nu(\ps_1-\ps(a_j))\gamma^\mu\ps_1)]
|
||||||
|
\\
|
||||||
|
&= 4\tr[(\ps_1-\ps(a_i))\ps_2(\ps_1-\ps(a_i))\ps_1]\\
|
||||||
|
&= 32\qty[(p(a_i)\cdot p_2)(p(a_i)\cdot p_1)]
|
||||||
|
\end{split}
|
||||||
|
\end{equation}
|
||||||
|
|
||||||
|
The same tricks as well as the commutation relation for gamma matrices
|
||||||
|
can be utilized for the case \(i\neq j\) and lead to
|
||||||
|
|
||||||
|
\begin{equation}
|
||||||
|
\label{eq:gii}
|
||||||
|
\begin{split}
|
||||||
|
\Gamma_{ii} &=
|
||||||
|
\tr[\gamma_\mu(\ps_1-\ps(a_i))\gamma_\nu\ps_2\gamma^\nu(\ps_1-\ps(a_j))\gamma^\mu\ps_1)]
|
||||||
|
\\
|
||||||
|
&= 4\tr[(\ps_1-\ps(a_i))\ps_2(\ps_1-\ps(a_i))\ps_1]\\
|
||||||
|
&= 32\qty[(p(a_i)\cdot p_2)(p(a_i)\cdot p_1)]
|
||||||
|
\end{split}
|
||||||
|
\end{equation}
|
|
@ -1,2 +1 @@
|
||||||
\maketitle
|
\maketitle
|
||||||
test
|
|
||||||
|
|
BIN
literature/prog/scrguide.pdf
Normal file
BIN
literature/prog/scrguide.pdf
Normal file
Binary file not shown.
27
notes.org
27
notes.org
|
@ -2,6 +2,8 @@
|
||||||
** Latex
|
** Latex
|
||||||
*** Latex/KOMA Ref-Sheet
|
*** Latex/KOMA Ref-Sheet
|
||||||
- [[file:literature/prog/LaTeX_RefSheet.pdf][Refsheet]]
|
- [[file:literature/prog/LaTeX_RefSheet.pdf][Refsheet]]
|
||||||
|
*** KOMA Docs
|
||||||
|
- [[file:literature/prog/scrguide.pdf][KOMA Docs]]
|
||||||
*** AUCTeX
|
*** AUCTeX
|
||||||
- [[file:literature/prog/tex-ref.pdf][Auctex]]
|
- [[file:literature/prog/tex-ref.pdf][Auctex]]
|
||||||
*** Modular Documents
|
*** Modular Documents
|
||||||
|
@ -26,9 +28,18 @@
|
||||||
:END:
|
:END:
|
||||||
- [[file:literature/feynman/Thomson.pdf][Modern Particle Physics]]
|
- [[file:literature/feynman/Thomson.pdf][Modern Particle Physics]]
|
||||||
- [[file:literature/feynman/Thomson.pdf::100][Spinors]]
|
- [[file:literature/feynman/Thomson.pdf::100][Spinors]]
|
||||||
|
- [[file:literature/feynman/Thomson.pdf::107][Spinors, Helicity Eigenstates]]
|
||||||
|
- [[file:literature/feynman/Thomson.pdf::533][Completeness Pol. Vectors]]
|
||||||
* Aufgaben
|
* Aufgaben
|
||||||
** Erste Aufgaben
|
** Erste Aufgabenp
|
||||||
**** Mail von Siegert
|
:LOGBOOK:
|
||||||
|
CLOCK: [2020-03-20 Fri 09:30]
|
||||||
|
:END:
|
||||||
|
*** Mail von Siegert
|
||||||
|
:LOGBOOK:
|
||||||
|
CLOCK: [2020-03-19 Thu 15:21]--[2020-03-19 Thu 17:25] => 2:04
|
||||||
|
CLOCK: [2020-03-19 Thu 10:05]--[2020-03-19 Thu 11:56] => 1:51
|
||||||
|
:END:
|
||||||
Hi Valentin,
|
Hi Valentin,
|
||||||
|
|
||||||
alles klar. Das Formular machen wir dann einfach im Nachhinein und
|
alles klar. Das Formular machen wir dann einfach im Nachhinein und
|
||||||
|
@ -56,7 +67,13 @@ Dann kannst Du mal qq->yy rechnen.
|
||||||
Klingt das OK fuer den Start?
|
Klingt das OK fuer den Start?
|
||||||
|
|
||||||
Viele Gruesse, Frank
|
Viele Gruesse, Frank
|
||||||
|
** Berechnung qq -> γγ
|
||||||
|
- 4 Anlaeufe :). Idiotischerweise 4-Vektor negiert
|
||||||
|
- letzter Anlauf mit Casimir Trick erfolgreich
|
||||||
|
- gute tricks:
|
||||||
|
- γ auf z Achse
|
||||||
|
- Symmetrien Beachten -> spart die Haelfte beim umdrehen der Spins
|
||||||
|
- Vollstaendigkeitsrelation von pol. Vektoren in Form: [[file:literature/feynman/Thomson.pdf::533][Completeness Pol. Vectors]]
|
||||||
* Clock Table
|
* Clock Table
|
||||||
#+BEGIN: clocktable :scope file :maxlevel 2
|
#+BEGIN: clocktable :scope file :maxlevel 2
|
||||||
#+CAPTION: Clock summary at [2020-03-18 Wed 21:01]
|
#+CAPTION: Clock summary at [2020-03-18 Wed 21:01]
|
||||||
|
@ -74,6 +91,10 @@ Viele Gruesse, Frank
|
||||||
- Ich stand ganz schoen auf dem Schlauch: Lorentz Invar = selbe Form
|
- Ich stand ganz schoen auf dem Schlauch: Lorentz Invar = selbe Form
|
||||||
in allen BS (muss nicht unb. konst bei LT sein), lorentzskalarfeld
|
in allen BS (muss nicht unb. konst bei LT sein), lorentzskalarfeld
|
||||||
|
|
||||||
|
** Impulserhaltung aus dem Gefuehl... (ohne deltas) ok?
|
||||||
|
** Normierung Photonenfeld?
|
||||||
|
** Globaler Spin bei pol. Vektoren?
|
||||||
|
** Spin nicht erhalten?
|
||||||
* Work Log
|
* Work Log
|
||||||
** 18.03
|
** 18.03
|
||||||
- habe mich in manche konzeptionelle Dinge ziemlich verrannt!
|
- habe mich in manche konzeptionelle Dinge ziemlich verrannt!
|
||||||
|
|
Loading…
Add table
Reference in a new issue