add the beginning of the cross section calculation

This commit is contained in:
hiro98 2020-03-25 16:28:35 +01:00
parent c0a0078633
commit f1c0541490
9 changed files with 293 additions and 11 deletions

View file

@ -1,6 +1,6 @@
\documentclass[fontsize=12pt,paper=a4,open=any,parskip=half, \documentclass[fontsize=12pt,paper=a4,open=any,parskip=half,
twoside=false,toc=listof,toc=bibliography,fleqn,leqno, twoside=false,toc=listof,toc=bibliography,fleqn,leqno,
captions=nooneline,captions=tableabove,german]{scrbook} captions=nooneline,captions=tableabove,english]{scrbook}
\usepackage{hirostyle} \usepackage{hirostyle}
\addbibresource{thesis.bib} \addbibresource{thesis.bib}
@ -11,6 +11,9 @@ captions=nooneline,captions=tableabove,german]{scrbook}
\begin{document} \begin{document}
\input{./tex/title.tex} \input{./tex/title.tex}
\input{./tex/qqgammagamma.tex}
\input{./tex/qqgammagamma/calculation.tex}
\tableofcontents \tableofcontents
\listoffigures \listoffigures
\listoftables \listoftables

View file

@ -2,15 +2,68 @@
\usepackage[utf8]{inputenc} % load early \usepackage[utf8]{inputenc} % load early
\usepackage[T1]{fontenc} \usepackage[T1]{fontenc}
% load early % load early
\usepackage[ngerman]{babel} \usepackage[english]{babel}
\usepackage[autostyle=true]{csquotes} \usepackage[autostyle=true]{csquotes}
\usepackage{palatino} \usepackage{newpxtext,newpxmath}
\usepackage{physics} \usepackage{physics}
\usepackage{graphicx, booktabs, float, scrhack} \usepackage{graphicx, booktabs, float, scrhack}
\usepackage{amsmath,amssymb} \usepackage{amsmath,amssymb}
\usepackage[automark]{scrlayer-scrpage} \usepackage[automark]{scrlayer-scrpage}
\usepackage[backend=biber,style=verbose,sortcase=false, \usepackage[backend=biber,style=verbose,sortcase=false,language=english]{biblatex}
language=british]{biblatex}
\PassOptionsToPackage{hyphens}{url} \PassOptionsToPackage{hyphens}{url}
\usepackage{siunitx}
\usepackage[pdfencoding=auto]{hyperref} % load late
% \usepackage[activate={true,nocompatibility},final,tracking=true,spacing=true,factor=1100,stretch=10,shrink=10]{microtype}
\usepackage{tikz-feynman}
\usepackage{caption}
\usepackage[list=true, font=small,
labelformat=brace, position=top]{subcaption}
\usepackage{tikz}
\usepackage{wrapfig}
\usepackage{slashed}
\usepackage[hidelinks]{hyperref} % load late %% Tikz
\usetikzlibrary{arrows,shapes,angles,quotes,arrows.meta}
%% Hyperref
\hypersetup{
colorlinks,
linkcolor={blue!50!black},
citecolor={red!50!black},
urlcolor={green!80!black}
}
%% Captions
\captionsetup{justification=centering}
%% Labels
\labelformat{section}{section #1}
\labelformat{figure}{figure #1}
\labelformat{table}{table #1}
% Macros
%% qqgg
\newcommand{\qqgg}[0]{q\bar{q}\rightarrow\gamma\gamma}
%% Impulses and Polarization Vectors convenience
\DeclareMathOperator{\ps}{\slashed{p}}
\DeclareMathOperator{\pe}{\varepsilon}
\DeclareMathOperator{\pes}{\slashed{\pe}}
\DeclareMathOperator{\pse}{\varepsilon^{*}}
\DeclareMathOperator{\pses}{\slashed{\pe}^{*}}
%% Spinor convenience
\DeclareMathOperator{\us}{u}
\DeclareMathOperator{\usb}{\bar{u}}
\DeclareMathOperator{\vs}{v}
\DeclareMathOperator{\vsb}{\bar{v}}
%% Fast Slash
\let\sl\slashed
%% Notes on Equations
\newcommand{\shorteqnote}[1]{ & & \text{\small\llap{#1}}}

View file

@ -1,4 +1,4 @@
LATEXMKFLAGS=-pdfxe -interaction=nonstopmode LATEXMKFLAGS=-pdflua -interaction=nonstopmode
OUTDIR=build OUTDIR=build
thesis: document.tex thesis: document.tex

View file

@ -0,0 +1,55 @@
\chapter{Quark-Antiquark Annihilation into
two Photons}%
\label{sec:qqgg}
Consider the scattering reaction \(\qqgg\). The first order expansion
of this process is described by the Feynman diagrams
in~\ref{fig:qqggfeyn}. Because there is only QED involved, the color
degrees of freedom average out and will not be considered henceforth.
Furthermore a high energy regime will be supposed and therefor masses
will be neglected.
\begin{figure}[h]
\centering
\begin{subfigure}[c]{.4\textwidth}
\centering
\begin{tikzpicture}
\begin{feynman}
\diagram [small,horizontal=i2 to a] {
i2 [particle=\(q\)] -- [fermion, momentum=\(p_2\)] a --
[fermion, reversed momentum=\(q\)] b,
i1 [particle=\(\bar{q}\)] -- [anti fermion, momentum'=\(p_1\)] b,
i2 -- [opacity=0] i1,
a -- [photon, momentum=\(p_3\)] f1 [particle=\(\gamma\)],
b -- [photon, momentum'=\(p_4\)] f2 [particle=\(\gamma\)],
f1 -- [opacity=0] f2,
};
\end{feynman}
\end{tikzpicture}
\subcaption{u channel}
\end{subfigure}
\begin{subfigure}[c]{.4\textwidth}
\centering
\begin{tikzpicture}
\begin{feynman}
\diagram [small,horizontal=i2 to a] {
i2 [particle=\(q\)] -- [fermion, momentum=\(p_2\)] a --
[fermion, reversed momentum'=\(q\)] b,
i1 [particle=\(\bar{q}\)] -- [anti fermion, momentum'=\(p_1\)] b,
i2 -- [opacity=0] i1,
a -- [draw=none] f2 [particle=\(\gamma\)],
b -- [draw=none] f1 [particle=\(\gamma\)],
f1 -- [opacity=0] f2,
};
\diagram* {
(a) -- [photon] (f1),
(b) -- [photon] (f2),
};
\end{feynman}
\end{tikzpicture}
\subcaption{\label{fig:qqggfeyn2}t channel}
\end{subfigure}
\caption{First order diagrams for \(\qqgg\).}%
\label{fig:qqggfeyn}
\end{figure}

View file

@ -0,0 +1,9 @@
% -*- mode: reftex-index-phrases; TeX-master: "calculation.tex" -*-
% Key Macro Format Repeat
%---------------------------------------------------------------------
>>>INDEX_MACRO_DEFINITION: i \index{%s} t
>>>INDEX_MACRO_DEFINITION: g \glossary{%s} t
%---------------------------------------------------------------------

View file

@ -0,0 +1,142 @@
\section{Calulation of the Cross Section to first Order}%
\label{sec:qqggcalc}
After labeling the incoming quarks and outcoming photons, as well as
the impulses according to~\ref{fig:qqggfeyn}, the feynman rules yield
the matrix elements in~\eqref{eq:matel}. The matrix element
for~\ref{fig:qqggfeyn2} is obtained by simply renaming
\(3\leftrightarrow 4\).
\begin{align}
\label{eq:matel}
\mathcal{M}_1 &= \frac{(gQ)^2}{\qty(p_1 - p_4)^2}\vsb(1)\pses(4)(\ps_1 -
\ps_4)\pses(3)\us(2)\\
\mathcal{M}_2 &= \frac{(gQ)^2}{\qty(p_1 - p_4)^2}\vsb(1)\pses(3)(\ps_1 - \ps_3)\pses(4)\us(2)
\end{align}
\begin{wrapfigure}{R}{0.4\textwidth}
\centering
\begin{tikzpicture}
\coordinate (origin) at (0,0);
\draw[-Latex] (origin) -- (-2,0) node[left] {\(p_3\)};
\draw[-Latex] (origin) -- (2,0) coordinate (p4) node[right] {\(p_4\)};
\draw[Latex-,rotate=40] (origin) -- (2,0) coordinate (p2) node[right] {\(p_2\)};
\draw[Latex-,rotate=40] (origin) -- (-2,0) node[left] {\(p_1\)};
\draw[fill=black] (origin) circle (.03);
\draw pic["$\Theta$", draw=black, <->, angle eccentricity=1.2, angle radius=1cm] {angle=p4--origin--p2};
\end{tikzpicture}
\caption{\label{fig:qqimpulses} Momentum diagram for the proces
\(\qqgg\) in the massles limit.}
\end{wrapfigure}
To simplify notation, the some shorthands are intruduced
in~\eqref{eq:scshort}.
\begin{align}
\label{eq:scshort}
s(x) &= \sin(x) & c(x) &= \cos(x) \\ s'(x) &= \sin(\frac{x}{2}) & c'(x) &= \cos(\frac{x}{2})
\end{align}
All calculations are made in the center of momentum frame unless
stated otherwise. The impulses used in the center of momentum frame
are concretised to in~\eqref{eq:pchoice} as well
as~\ref{fig:qqimpulses}. Note that the photons are aligned to the
z-axis as this led to a simple choice for the polarization vectors,
when calculating the matrix element directly. Here casimir's trick is
being used but the labeling was kept.
\begin{align}
\label{eq:pchoice}
p_1&=p\cdot\mqty(1 \\ s \\ 0 \\ c)
& p_2&=p\cdot\mqty(1 \\ -s \\ 0 \\ -c)
& p_3&=p\cdot\mqty(1 \\ 0 \\ 0 \\ -1)
& p_4&=p\cdot\mqty(1 \\ 0 \\ 0 \\ 1)
\end{align}
Now observe that \((p_1-p_4)^2=-4p^2s'^2\) and
\((p_1-p_3)^2=-4p^2c'^2\) (Minkowski metric) and define \(\Gamma_1\)
and \(\Gamma_1\) as in~\eqref{eq:gammadef}.
\begin{align}
\label{eq:gammadef}
\Gamma_1 &= \pses(4)(\ps_1 - \ps_4)\pses(3) &
\Gamma_2 &= \pses(3)(\ps_1 - \ps_3)\pses(4)
\end{align}
The total matrix element (the minus sign has been dropped) is given in~\eqref{eq:totalm}.
\begin{equation}
\label{eq:totalm}
\mathcal{M} = \mathcal{M}_1 + \mathcal{M}_2 = \frac{(gQ)^2}{\qty(2p)^2}\vsb(1)\qty(\frac{\Gamma_1}{s'^2}+\frac{\Gamma_2}{c'^2})\us(2)
\end{equation}
To obtain an experimentally verifiable cross section the absolute square of the
matrix element will averaged over incoming helicities and summed over
all photon polarisations. Using casimir's trick, the averaging can be
simplified to the calculation of a trace as in where \(s_i\) are
helicities, \(\lambda_i\) are the polarisations and \(\bar{\Gamma_i}=\gamma^0\Gamma^\dagger_i\gamma^0\).
\begin{equation}
\label{eq:averagedm}
\langle\mathcal{M}\rangle = \frac{1}{4}\sum_{s_1 s_2}\sum_{\lambda_1
\lambda_2} \abs{\mathcal{M}}^2=\frac{1}{4}\sum_{\lambda_1
\lambda_2}\tr[\qty(\frac{\Gamma_1}{s'^2}+\frac{\Gamma_2}{c'^2})
\ps_2\qty(\frac{\bar{\Gamma}_1}{s'^2}+\frac{\bar{\Gamma}_2}{c'^2})\ps_1]
\end{equation}
With the definition \(a_1=4,b_1=3,a_2=3,b_2=4\) the \(\Gamma\)
matrices and their bared variants can be written as in~\eqref{eq:shortgamma}.
\begin{align}
\label{eq:shortgamma}
\Gamma_i &= \pses(a_i)(\ps_1 - \ps(a_i))\pses(b_i) & \bar{\Gamma}_i &= \pes(b_i)(\ps_1 - \ps(a_i))\pes(a_i)
\end{align}
To work out~\eqref{eq:averagedm} one must evaluate terms of the
form~\eqref{eq:gbricks}.
\begin{align}
\label{eq:gbricks}
\Gamma_{ij} = \sum_{\lambda_1\lambda_2} \tr(\Gamma_i\ps_2\Gamma_j\ps_1) =
\sum_{\lambda_1\lambda_2} \tr[\pses(a_i)(\ps_1-\ps(a_i))\pses(b_i)\ps_2\pes(b_i)(\ps_1 - \ps(a_i))\pes(a_i)\ps_1]
\end{align}
The sum over plarisation can be simplified by utilizing the
completeness relation for polarisation vectors for \emph{external}
photons~\eqref{eq:polcomp}.
\begin{equation}
\label{eq:polcomp}
\sum_{\lambda=1}^{2}\pe_{(\lambda)}^\mu\pe_{(\lambda)}^{*\nu} = -g^{\mu\nu}
\end{equation}
For \(i=j\) and by utilizing \(\gamma_\mu\sl{a}\gamma^\mu=-2\sl{a}\),
\(\gamma_\mu\sl{a}\sl{b}\sl{c}\gamma^\mu=-2\sl{c}\sl{b}\sl{a}\) as
well as \(\ps_i\ps_i=p_i\cdot p_i = 0\) and the well known trace
theorems for the gamma matrices~\eqref{eq:gii} follows.
\begin{equation}
\label{eq:gii}
\begin{split}
\Gamma_{ii} &=
\tr[\gamma_\mu(\ps_1-\ps(a_i))\gamma_\nu\ps_2\gamma^\nu(\ps_1-\ps(a_j))\gamma^\mu\ps_1)]
\\
&= 4\tr[(\ps_1-\ps(a_i))\ps_2(\ps_1-\ps(a_i))\ps_1]\\
&= 32\qty[(p(a_i)\cdot p_2)(p(a_i)\cdot p_1)]
\end{split}
\end{equation}
The same tricks as well as the commutation relation for gamma matrices
can be utilized for the case \(i\neq j\) and lead to
\begin{equation}
\label{eq:gii}
\begin{split}
\Gamma_{ii} &=
\tr[\gamma_\mu(\ps_1-\ps(a_i))\gamma_\nu\ps_2\gamma^\nu(\ps_1-\ps(a_j))\gamma^\mu\ps_1)]
\\
&= 4\tr[(\ps_1-\ps(a_i))\ps_2(\ps_1-\ps(a_i))\ps_1]\\
&= 32\qty[(p(a_i)\cdot p_2)(p(a_i)\cdot p_1)]
\end{split}
\end{equation}

View file

@ -1,2 +1 @@
\maketitle \maketitle
test

Binary file not shown.

View file

@ -2,6 +2,8 @@
** Latex ** Latex
*** Latex/KOMA Ref-Sheet *** Latex/KOMA Ref-Sheet
- [[file:literature/prog/LaTeX_RefSheet.pdf][Refsheet]] - [[file:literature/prog/LaTeX_RefSheet.pdf][Refsheet]]
*** KOMA Docs
- [[file:literature/prog/scrguide.pdf][KOMA Docs]]
*** AUCTeX *** AUCTeX
- [[file:literature/prog/tex-ref.pdf][Auctex]] - [[file:literature/prog/tex-ref.pdf][Auctex]]
*** Modular Documents *** Modular Documents
@ -26,9 +28,18 @@
:END: :END:
- [[file:literature/feynman/Thomson.pdf][Modern Particle Physics]] - [[file:literature/feynman/Thomson.pdf][Modern Particle Physics]]
- [[file:literature/feynman/Thomson.pdf::100][Spinors]] - [[file:literature/feynman/Thomson.pdf::100][Spinors]]
- [[file:literature/feynman/Thomson.pdf::107][Spinors, Helicity Eigenstates]]
- [[file:literature/feynman/Thomson.pdf::533][Completeness Pol. Vectors]]
* Aufgaben * Aufgaben
** Erste Aufgaben ** Erste Aufgabenp
**** Mail von Siegert :LOGBOOK:
CLOCK: [2020-03-20 Fri 09:30]
:END:
*** Mail von Siegert
:LOGBOOK:
CLOCK: [2020-03-19 Thu 15:21]--[2020-03-19 Thu 17:25] => 2:04
CLOCK: [2020-03-19 Thu 10:05]--[2020-03-19 Thu 11:56] => 1:51
:END:
Hi Valentin, Hi Valentin,
alles klar. Das Formular machen wir dann einfach im Nachhinein und alles klar. Das Formular machen wir dann einfach im Nachhinein und
@ -56,7 +67,13 @@ Dann kannst Du mal qq->yy rechnen.
Klingt das OK fuer den Start? Klingt das OK fuer den Start?
Viele Gruesse, Frank Viele Gruesse, Frank
** Berechnung qq -> γγ
- 4 Anlaeufe :). Idiotischerweise 4-Vektor negiert
- letzter Anlauf mit Casimir Trick erfolgreich
- gute tricks:
- γ auf z Achse
- Symmetrien Beachten -> spart die Haelfte beim umdrehen der Spins
- Vollstaendigkeitsrelation von pol. Vektoren in Form: [[file:literature/feynman/Thomson.pdf::533][Completeness Pol. Vectors]]
* Clock Table * Clock Table
#+BEGIN: clocktable :scope file :maxlevel 2 #+BEGIN: clocktable :scope file :maxlevel 2
#+CAPTION: Clock summary at [2020-03-18 Wed 21:01] #+CAPTION: Clock summary at [2020-03-18 Wed 21:01]
@ -74,6 +91,10 @@ Viele Gruesse, Frank
- Ich stand ganz schoen auf dem Schlauch: Lorentz Invar = selbe Form - Ich stand ganz schoen auf dem Schlauch: Lorentz Invar = selbe Form
in allen BS (muss nicht unb. konst bei LT sein), lorentzskalarfeld in allen BS (muss nicht unb. konst bei LT sein), lorentzskalarfeld
** Impulserhaltung aus dem Gefuehl... (ohne deltas) ok?
** Normierung Photonenfeld?
** Globaler Spin bei pol. Vektoren?
** Spin nicht erhalten?
* Work Log * Work Log
** 18.03 ** 18.03
- habe mich in manche konzeptionelle Dinge ziemlich verrannt! - habe mich in manche konzeptionelle Dinge ziemlich verrannt!