details, details!

This commit is contained in:
hiro98 2020-06-24 20:15:24 +02:00
parent 0b7226a3d6
commit ec10192cd9
2 changed files with 247 additions and 39 deletions

View file

@ -344,3 +344,16 @@
Primaryclass = {hep-ex},
Reportnumber = {CMS-HIG-12-028, CERN-PH-EP-2012-220},
}
@article{Bhat:2020ktg,
author = "Bhat, Manjunath and Cichy, Krzysztof and
Constantinou, Martha and Scapellato, Aurora",
title = "{Parton distribution functions from lattice QCD at
physical quark masses via the pseudo-distribution
approach}",
eprint = "2005.02102",
archivePrefix ="arXiv",
primaryClass = "hep-lat",
month = "5",
year = "2020"
}

View file

@ -8,9 +8,10 @@
\usepackage{slashed}
\usepackage{tikz}
\usepackage{tikz-feynman}
\usepackage{pdfpcnotes}
\usepackage[list=true, font=small,
labelformat=brace, position=top]{subcaption}
% \setbeameroption{show notes on second screen} %
%\setbeameroption{show notes on second screen} %
\addbibresource{thesis.bib}
\graphicspath{ {figs/} }
\usepackage{animate}
@ -30,12 +31,11 @@ labelformat=brace, position=top]{subcaption}
}
\AtBeginSubsection[
{\frame<beamer>{\frametitle{Outline}
{\frame<beamer>{%
\tableofcontents[currentsection,currentsubsection]}}%
]
\setbeamertemplate{footline}[frame number]
\setbeamertemplate{note page}[plain]
\setbeamertemplate{bibliography item}{\insertbiblabel} %% Remove book
%% symbol from references and add
%% number
@ -165,6 +165,7 @@ labelformat=brace, position=top]{subcaption}
\end{itemize}
\end{itemize}
\end{block}
\pnote{Why usefult for ev. gen -> later}
\end{frame}
\section{Calculation of the \(\qqgg\) Cross Section}
@ -236,7 +237,7 @@ labelformat=brace, position=top]{subcaption}
\label{eq:averagedm_final}
\langle\abs{\mathcal{M}}^2\rangle = \frac{4}{3}(gZ)^4
\cdot\frac{1+\cos^2(\theta)}{\sin^2(\theta)} =
\frac{4}{3}(gZ)^4\cdot(2\cosh(\eta) - 1)
\frac{4}{3}(gZ)^4\cdot(\tanh(\eta)^2 + 1)
\end{equation}
%
\pause
@ -289,9 +290,9 @@ labelformat=brace, position=top]{subcaption}
\section{Monte Carlo Methods}
\note[itemize]{
\item Gradually bring in knowledge through distribution. }
\begin{frame}
\pnote{
- Gradually bring in knowledge through distribution. }
\begin{block}{Basic Ideas}
\begin{itemize}
\item<+-> Given some unknown function
@ -311,12 +312,15 @@ labelformat=brace, position=top]{subcaption}
\end{frame}
\subsection{Integration}
\note[itemize]{
\item omitting details (law of big numbers, central limit theorem)
\item at least three angles of attack
\item some sort of importance sampling, volume: stratified sampling }
\begin{frame}
\begin{itemize}
\pnote{
- omitting details (law of big numbers, central limit theorem)\\
- at least three angles of attack\\
- some sort of importance sampling, volume: stratified sampling\\
- ADVANTAGES OF MC
- METHOD NAMES}
\begin{itemize}
\item<+-> we have:
\(f\colon \vb{x}\in\Omega\subset\mathbb{R}^n\mapsto\mathbb{R}\)
and \(\rho\colon \vb{x}\in\Omega\mapsto\mathbb{R}_{> 0}\) with
@ -337,7 +341,7 @@ labelformat=brace, position=top]{subcaption}
\end{equation}
\item<+-> error approximation:
\begin{align}
\sigma_I^2 &= \frac{\textcolor<+->{red}{\sigma^2}}{\textcolor<.->{blue}{N}} \\
\sigma_I^2 &= \frac{\textcolor<+->{blue}{\sigma^2}}{\textcolor<.->{red}{N}} \\
\sigma^2 &= \VAR{\frac{F}{\Rho}} = \int_{\textcolor<+(3)->{blue}{\Omega}} \qty[I -
\frac{f(\vb{x})}{\textcolor<+->{blue}{\rho(\vb{x})}}]^2
\textcolor<.->{blue}{\rho(\vb{x})} \textcolor<+->{blue}{\dd{\vb{x}}} \approx \frac{1}{N - 1}\sum_i \qty[I -
@ -346,7 +350,7 @@ labelformat=brace, position=top]{subcaption}
\end{itemize}
\end{frame}
\begin{frame}{Change of Variables}
\begin{frame}{Naive Integration Change of Variables}
Choose \(\rho(\vb{x}) = \frac{1}{\abs{\Omega}}\)
\onslide<2->{\(\implies I=\frac{\abs{\Omega}}{N}\sum_{i=1}^N
f(\vb{x_i})=\abs{\Omega}\cdot\bar{f}\) and
@ -374,12 +378,11 @@ labelformat=brace, position=top]{subcaption}
\end{figure}
\end{frame}
\note[itemize]{
\item proposed by G. Peter Lepage (slac) 1976
\item own implementation!!!
}
\begin{frame}{\vegas\ Algorithm \cite{Lepage:19781an}}
\pnote{
- proposed by G. Peter Lepage (slac) 1976 \\
- own implementation!!!
}
\begin{columns}
\begin{column}{.5\textwidth}
\begin{block}{Idea}
@ -418,13 +421,14 @@ labelformat=brace, position=top]{subcaption}
\item events can be ``dressed'' with additional effects
\end{itemize}
\end{frame}
\note[itemize]{
\item prop. to density
\item generalization to n dim is easy
\item idea -> cumulative propability the same
}
\begin{frame}
\begin{itemize}[<+->]
\pnote{
- prop. to density
- generalization to n dim is easy
- idea -> cumulative propability the same
}
\begin{itemize}[<+->]
\item we have: \(f\colon x\in\Omega\mapsto\mathbb{R}_{>0}\)
(choose \(\Omega = [0, 1]\)) and uniformly random samples \(\{x_i\}\)
\item we seek: a sample \(\{y_i\}\) distributed according to \(f\)
@ -458,7 +462,7 @@ labelformat=brace, position=top]{subcaption}
\item accept each sample with the probability~\(f(x_i)/g(x_i)\)
(importance sampling)
\item total probability of accepting a sample: \(\mathfrak{e} =
A/B < 1\) (efficiency)
A/B \leq 1\) (efficiency)
\item simplest choice \(g=\max_{x\in\Omega}f(x)=f_{\text{max}}\)
\item again: efficiency gain through reduction of variance
\end{itemize}
@ -468,7 +472,7 @@ labelformat=brace, position=top]{subcaption}
\begin{itemize}[<+->]
\item<.-> sampling \(\dv{\sigma}{\cos\theta}\):
\result{xs/python/naive_th_samp}
\item sampling \(\dv{\sigma}{\cos\theta}\):
\item sampling \(\dv{\sigma}{\eta}\):
\result{xs/python/eta_eff}
\end{itemize}
\end{block}
@ -481,7 +485,9 @@ labelformat=brace, position=top]{subcaption}
efficiency gain: \result{xs/python/tuned_th_samp}
\end{block}
\begin{itemize}
\item<+-> Of course, we can use \vegas\ to provide a better \(g\).
\item<+-> Of course, we can use \vegas\ to provide a better
\(g\implies\) \result{xs/python/strat_th_samp}
\pnote{Has problems, not discussing now.}
\end{itemize}
\end{column}
\begin{column}{.6\textwidth}
@ -500,7 +506,7 @@ labelformat=brace, position=top]{subcaption}
\item subdivide sampling volume \(\Omega\) into \(K\) subvolumes
\(\Omega_i\)
\item let \(A_i = \int_{\Omega_i}f(x)\dd{x}\)
\item take \(N_i=A_i \cdot N\) samples in each subvolume
\item take \(N_i=\frac{A_i}{\sum_jA_j} \cdot N\) samples in each subvolume
\item efficiency is given by:
\(\mathfrak{e} = \frac{\sum_i A_i}{\sum_i A_i/\mathfrak{e}_i}\)
\end{itemize}
@ -509,11 +515,11 @@ labelformat=brace, position=top]{subcaption}
How do choose the \(\Omega_i\)? \pause {\huge\vegas! :-)}
\end{frame}
\note[itemize]{
\item no need to know the jacobian ;)
}
\begin{frame}{Observables}
\begin{itemize}
\pnote{
- no need to know the jacobian ;)
}
\begin{itemize}
\item we want: distributions of other observables \pause
\item turns out: simpliy piping samples \(\{x_i\}\) through a map
\(\gamma\colon\Omega\mapsto\mathbb{R}\) is enough
@ -554,15 +560,15 @@ labelformat=brace, position=top]{subcaption}
\sigma_{ij} = \int f_i\qty(x_1;Q^2) f_j\qty(x_2;Q^2) \hat{\sigma}_{ij}\qty(x_1,
x_2, Q^2)\dd{x_1}\dd{x_2}
\end{equation}
\item have to be obtained experimentally (or through lattice QCD\cite{Bhat:2020ktg})
\end{itemize}
\end{block}
\end{frame}
\subsection{Implementation}
\note[itemize]{
\item took longest time :P
}
\begin{frame}
\pnote{ - took longest time :P }
\begin{columns}
\begin{column}{.4\textwidth}
\begin{block}{What do we need?}
@ -590,12 +596,11 @@ labelformat=brace, position=top]{subcaption}
convolved with PDFs for fixed \protect
\result{xs/python/pdf/second_x} in picobarn.}
\end{figure}
}
\only<+>{
} \only<+>{
\begin{figure}
\centering \plot[width=\columnwidth]{pdf/dist3d_eta_const}
\caption{\label{fig:dist-pdf-fixed-eta}Differential cross section
convolved with PDFs for fixed \protect
\caption{\label{fig:dist-pdf-fixed-eta}Differential cross
section convolved with PDFs for fixed \protect
\result{xs/python/pdf/plot_eta} in picobarn.}
\end{figure}
}
@ -633,6 +638,153 @@ labelformat=brace, position=top]{subcaption}
\end{figure}
\end{frame}
\section{Penomenological Studies}
\begin{frame}{What is missing?}
\pause
\begin{itemize}[<+->]
\item treatement of the beam remnants
\item intrinsic \(\pt\)
\item parton showers \pnote{NLO effects}
\item hadronization
\item (NLO matrix elements)
\item multiple interactions
\end{itemize}
\pause \(\implies\) \sherpa\ can model those effects
\end{frame}
\subsection{Set-Up}
\begin{frame}
\pnote{ - cuts and energies same as before\\
- pun intended\\
- now discuss impact}
\begin{itemize}
\item same phase-space cuts and energies as before
\item isolation cone cuts
\end{itemize}
\begin{block}{The five Stages}
\begin{description}
\item[LO] as before
\item[LO+PS] parton showers with
\emph{CSShower}~\cite{schumann2008:ap}
\item[LO+PS+pT] beam remnants and primordial \(\pt\)
\item[LO+PS+pT+Hadronization] hadronization with
\emph{Ahadic}~\cite{Winter2003:tt}.
\item[LO+PS+pT+Hadronization+MI] Multiple Interactions (MI) with
\emph{Amisic}~\cite{Bothmann:2019yzt}
\end{description}
\end{block}
\end{frame}
\subsection{Results}
\begin{frame}{Transverse Momentum of the \(\gamma\gamma\) System}
\begin{columns}
\begin{column}{.5\textwidth}
\begin{figure}[ht]
\rivethist[width=\columnwidth]{pheno/total_pT}
\end{figure}
\end{column}
\begin{column}{.5\textwidth}
\begin{itemize}
\item photon system acquires recoil momentum
\item primordial \(\pt\) enhances xs in low momentum regions
\end{itemize}
\end{column}
\end{columns}
\pnote{
- parton shower: col-linear limit\\
- others the same
}
\end{frame}
\begin{frame}{Transverse Momentum of the leading Photon}
\begin{columns}
\begin{column}{.5\textwidth}
\begin{figure}[ht]
\rivethist[width=\columnwidth]{pheno/pT}
\end{figure}
\end{column}
\begin{column}{.5\textwidth}
\begin{itemize}
\item boost to higher \(\pt\)
\item all but \stone\ stage largely compatible
\end{itemize}
\end{column}
\end{columns}
\end{frame}
\begin{frame}{Invariant Mass of the \(\gamma\gamma\) System}
\begin{columns}
\begin{column}{.5\textwidth}
\begin{figure}[ht]
\rivethist[width=\columnwidth]{pheno/inv_m}
\end{figure}
\end{column}
\begin{column}{.5\textwidth}
\begin{itemize}
\item events can be recoiled past the cuts (very rare)
\item otherwise shape similar to the \stone\ stage
\begin{itemize}
\item largely governed by the PDF
\end{itemize}
\end{itemize}
\end{column}
\end{columns}
\end{frame}
\begin{frame}{Angular Distributions}
\begin{figure}[ht]
\rivethist[width=.49\columnwidth]{pheno/eta}
\rivethist[width=.49\columnwidth]{pheno/cos_theta}
\end{figure}
\end{frame}
\begin{frame}{Conclusions}
\begin{itemize}
\item parton showering and primordial \(\pt\) have biggest effect on
shape
\item hadronization and multiple interactions give rise to isolation
effects
\item for angular observables the \stone\ case gives a reasonably
good qualitative picture
\end{itemize}
\pnote{
- no qed showers\\
- nlo me
}
\end{frame}
\section{Summary}
\begin{frame}
\begin{columns}
\begin{column}{.7\textwidth}
We have...
\begin{itemize}
\item calculated the cross section for \(\qqgg\)
\item studied and implemented Monte Carlo integration and
sampling
\begin{itemize}
\item using in \vegas\ whenever possible :)
\end{itemize}
\item built a simple \(\ppgg\) event generator
\item looked further down the road with sherpa
\end{itemize}
\end{column}
\pause
\begin{column}{.3\textwidth}
\includegraphics[width=\columnwidth]{questions.jpeg}
\end{column}
\end{columns}
\begin{center}
{\huge Thanks for your attention! Questions: Now!}
\end{center}
\end{frame}
\begin{frame}[allowframebreaks]
\frametitle{References}
\printbibliography
@ -711,4 +863,47 @@ labelformat=brace, position=top]{subcaption}
and weighting distribution.}
\end{figure}
\end{frame}
\begin{frame}{Compatibility of Histograms}
The compatibility of histograms is tested as described
in~\cite{porter2008:te}. The test value
is \[T=\sum_{i=1}^k\frac{(u_i-v_i)^2}{u_i+v_i}\] where \(u_i, v_i\)
are the number of samples in the \(i\)-th bin of the histograms
\(u,v\) and \(k\) is the number of bins. This value is \(\chi^2\)
distributed with \(k\) degrees, when the number of samples in the
histogram is reasonably high. The mean of this distribution is \(k\)
and its standard deviation is \(\sqrt{2k}\). The value
\[P = 1 - \int_0^{T}f(x;k)\dd{x}\] states with which probability the
\(T\) value would be greater than the obtained one, where \(f\) is the
probability density of the \(\chi^2\) distribution. Thus
\(P\in [0,1]\) is a measure of confidence for the compatibility of the
histograms. These formulas hold, if the total number of events in both
histograms is the same.
\end{frame}
\begin{frame}{Cut Flow}
\pnote{
- 2 kinds of impact: phase space and isolation\\
- these effects have an impact on fiducial xs\\
- PS, pT more phase space\\
- Hadr. and MI isolation
}
\begin{table}[ht]
\centering
\begin{tabular}{l|SSS}
&&\multicolumn{2}{c}{events discarded by cuts} \\
Stage & {\(\sigma\) [\si{\pico\barn}]} & {phase space
[\si{\percent}]} &
{isolation
[\SI{1e-4}{\percent}]} \\
\toprule
\stfive & 33.02(7) & 97.63 & 9.56 \\
\stfour & 34.08(7) & 97.56 & 1.89\\
\stthree & 33.97(7) & 97.56 & 3.52 \\
\sttwo & 34.60(7) & 97.52 & 3.63 \\
\stone & 38.74(7) & 96.77 & 0 \\
\end{tabular}
\caption{\label{tab:xscut}Cross sections and cut statistics.}
\end{table}
\end{frame}
\end{document}