mirror of
https://github.com/vale981/bachelor_thesis
synced 2025-03-04 17:11:39 -05:00
details, details!
This commit is contained in:
parent
0b7226a3d6
commit
ec10192cd9
2 changed files with 247 additions and 39 deletions
|
@ -344,3 +344,16 @@
|
|||
Primaryclass = {hep-ex},
|
||||
Reportnumber = {CMS-HIG-12-028, CERN-PH-EP-2012-220},
|
||||
}
|
||||
|
||||
@article{Bhat:2020ktg,
|
||||
author = "Bhat, Manjunath and Cichy, Krzysztof and
|
||||
Constantinou, Martha and Scapellato, Aurora",
|
||||
title = "{Parton distribution functions from lattice QCD at
|
||||
physical quark masses via the pseudo-distribution
|
||||
approach}",
|
||||
eprint = "2005.02102",
|
||||
archivePrefix ="arXiv",
|
||||
primaryClass = "hep-lat",
|
||||
month = "5",
|
||||
year = "2020"
|
||||
}
|
||||
|
|
273
talk/slides.tex
273
talk/slides.tex
|
@ -8,9 +8,10 @@
|
|||
\usepackage{slashed}
|
||||
\usepackage{tikz}
|
||||
\usepackage{tikz-feynman}
|
||||
\usepackage{pdfpcnotes}
|
||||
\usepackage[list=true, font=small,
|
||||
labelformat=brace, position=top]{subcaption}
|
||||
% \setbeameroption{show notes on second screen} %
|
||||
%\setbeameroption{show notes on second screen} %
|
||||
\addbibresource{thesis.bib}
|
||||
\graphicspath{ {figs/} }
|
||||
\usepackage{animate}
|
||||
|
@ -30,12 +31,11 @@ labelformat=brace, position=top]{subcaption}
|
|||
}
|
||||
|
||||
\AtBeginSubsection[
|
||||
{\frame<beamer>{\frametitle{Outline}
|
||||
{\frame<beamer>{%
|
||||
\tableofcontents[currentsection,currentsubsection]}}%
|
||||
]
|
||||
|
||||
\setbeamertemplate{footline}[frame number]
|
||||
\setbeamertemplate{note page}[plain]
|
||||
\setbeamertemplate{bibliography item}{\insertbiblabel} %% Remove book
|
||||
%% symbol from references and add
|
||||
%% number
|
||||
|
@ -165,6 +165,7 @@ labelformat=brace, position=top]{subcaption}
|
|||
\end{itemize}
|
||||
\end{itemize}
|
||||
\end{block}
|
||||
\pnote{Why usefult for ev. gen -> later}
|
||||
\end{frame}
|
||||
|
||||
\section{Calculation of the \(\qqgg\) Cross Section}
|
||||
|
@ -236,7 +237,7 @@ labelformat=brace, position=top]{subcaption}
|
|||
\label{eq:averagedm_final}
|
||||
\langle\abs{\mathcal{M}}^2\rangle = \frac{4}{3}(gZ)^4
|
||||
\cdot\frac{1+\cos^2(\theta)}{\sin^2(\theta)} =
|
||||
\frac{4}{3}(gZ)^4\cdot(2\cosh(\eta) - 1)
|
||||
\frac{4}{3}(gZ)^4\cdot(\tanh(\eta)^2 + 1)
|
||||
\end{equation}
|
||||
%
|
||||
\pause
|
||||
|
@ -289,9 +290,9 @@ labelformat=brace, position=top]{subcaption}
|
|||
|
||||
\section{Monte Carlo Methods}
|
||||
|
||||
\note[itemize]{
|
||||
\item Gradually bring in knowledge through distribution. }
|
||||
\begin{frame}
|
||||
\pnote{
|
||||
- Gradually bring in knowledge through distribution. }
|
||||
\begin{block}{Basic Ideas}
|
||||
\begin{itemize}
|
||||
\item<+-> Given some unknown function
|
||||
|
@ -311,12 +312,15 @@ labelformat=brace, position=top]{subcaption}
|
|||
\end{frame}
|
||||
|
||||
\subsection{Integration}
|
||||
\note[itemize]{
|
||||
\item omitting details (law of big numbers, central limit theorem)
|
||||
\item at least three angles of attack
|
||||
\item some sort of importance sampling, volume: stratified sampling }
|
||||
|
||||
\begin{frame}
|
||||
\begin{itemize}
|
||||
\pnote{
|
||||
- omitting details (law of big numbers, central limit theorem)\\
|
||||
- at least three angles of attack\\
|
||||
- some sort of importance sampling, volume: stratified sampling\\
|
||||
- ADVANTAGES OF MC
|
||||
- METHOD NAMES}
|
||||
\begin{itemize}
|
||||
\item<+-> we have:
|
||||
\(f\colon \vb{x}\in\Omega\subset\mathbb{R}^n\mapsto\mathbb{R}\)
|
||||
and \(\rho\colon \vb{x}\in\Omega\mapsto\mathbb{R}_{> 0}\) with
|
||||
|
@ -337,7 +341,7 @@ labelformat=brace, position=top]{subcaption}
|
|||
\end{equation}
|
||||
\item<+-> error approximation:
|
||||
\begin{align}
|
||||
\sigma_I^2 &= \frac{\textcolor<+->{red}{\sigma^2}}{\textcolor<.->{blue}{N}} \\
|
||||
\sigma_I^2 &= \frac{\textcolor<+->{blue}{\sigma^2}}{\textcolor<.->{red}{N}} \\
|
||||
\sigma^2 &= \VAR{\frac{F}{\Rho}} = \int_{\textcolor<+(3)->{blue}{\Omega}} \qty[I -
|
||||
\frac{f(\vb{x})}{\textcolor<+->{blue}{\rho(\vb{x})}}]^2
|
||||
\textcolor<.->{blue}{\rho(\vb{x})} \textcolor<+->{blue}{\dd{\vb{x}}} \approx \frac{1}{N - 1}\sum_i \qty[I -
|
||||
|
@ -346,7 +350,7 @@ labelformat=brace, position=top]{subcaption}
|
|||
\end{itemize}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Change of Variables}
|
||||
\begin{frame}{Naive Integration Change of Variables}
|
||||
Choose \(\rho(\vb{x}) = \frac{1}{\abs{\Omega}}\)
|
||||
\onslide<2->{\(\implies I=\frac{\abs{\Omega}}{N}\sum_{i=1}^N
|
||||
f(\vb{x_i})=\abs{\Omega}\cdot\bar{f}\) and
|
||||
|
@ -374,12 +378,11 @@ labelformat=brace, position=top]{subcaption}
|
|||
\end{figure}
|
||||
\end{frame}
|
||||
|
||||
\note[itemize]{
|
||||
\item proposed by G. Peter Lepage (slac) 1976
|
||||
\item own implementation!!!
|
||||
}
|
||||
\begin{frame}{\vegas\ Algorithm \cite{Lepage:19781an}}
|
||||
|
||||
\pnote{
|
||||
- proposed by G. Peter Lepage (slac) 1976 \\
|
||||
- own implementation!!!
|
||||
}
|
||||
\begin{columns}
|
||||
\begin{column}{.5\textwidth}
|
||||
\begin{block}{Idea}
|
||||
|
@ -418,13 +421,14 @@ labelformat=brace, position=top]{subcaption}
|
|||
\item events can be ``dressed'' with additional effects
|
||||
\end{itemize}
|
||||
\end{frame}
|
||||
\note[itemize]{
|
||||
\item prop. to density
|
||||
\item generalization to n dim is easy
|
||||
\item idea -> cumulative propability the same
|
||||
}
|
||||
|
||||
\begin{frame}
|
||||
\begin{itemize}[<+->]
|
||||
\pnote{
|
||||
- prop. to density
|
||||
- generalization to n dim is easy
|
||||
- idea -> cumulative propability the same
|
||||
}
|
||||
\begin{itemize}[<+->]
|
||||
\item we have: \(f\colon x\in\Omega\mapsto\mathbb{R}_{>0}\)
|
||||
(choose \(\Omega = [0, 1]\)) and uniformly random samples \(\{x_i\}\)
|
||||
\item we seek: a sample \(\{y_i\}\) distributed according to \(f\)
|
||||
|
@ -458,7 +462,7 @@ labelformat=brace, position=top]{subcaption}
|
|||
\item accept each sample with the probability~\(f(x_i)/g(x_i)\)
|
||||
(importance sampling)
|
||||
\item total probability of accepting a sample: \(\mathfrak{e} =
|
||||
A/B < 1\) (efficiency)
|
||||
A/B \leq 1\) (efficiency)
|
||||
\item simplest choice \(g=\max_{x\in\Omega}f(x)=f_{\text{max}}\)
|
||||
\item again: efficiency gain through reduction of variance
|
||||
\end{itemize}
|
||||
|
@ -468,7 +472,7 @@ labelformat=brace, position=top]{subcaption}
|
|||
\begin{itemize}[<+->]
|
||||
\item<.-> sampling \(\dv{\sigma}{\cos\theta}\):
|
||||
\result{xs/python/naive_th_samp}
|
||||
\item sampling \(\dv{\sigma}{\cos\theta}\):
|
||||
\item sampling \(\dv{\sigma}{\eta}\):
|
||||
\result{xs/python/eta_eff}
|
||||
\end{itemize}
|
||||
\end{block}
|
||||
|
@ -481,7 +485,9 @@ labelformat=brace, position=top]{subcaption}
|
|||
efficiency gain: \result{xs/python/tuned_th_samp}
|
||||
\end{block}
|
||||
\begin{itemize}
|
||||
\item<+-> Of course, we can use \vegas\ to provide a better \(g\).
|
||||
\item<+-> Of course, we can use \vegas\ to provide a better
|
||||
\(g\implies\) \result{xs/python/strat_th_samp}
|
||||
\pnote{Has problems, not discussing now.}
|
||||
\end{itemize}
|
||||
\end{column}
|
||||
\begin{column}{.6\textwidth}
|
||||
|
@ -500,7 +506,7 @@ labelformat=brace, position=top]{subcaption}
|
|||
\item subdivide sampling volume \(\Omega\) into \(K\) subvolumes
|
||||
\(\Omega_i\)
|
||||
\item let \(A_i = \int_{\Omega_i}f(x)\dd{x}\)
|
||||
\item take \(N_i=A_i \cdot N\) samples in each subvolume
|
||||
\item take \(N_i=\frac{A_i}{\sum_jA_j} \cdot N\) samples in each subvolume
|
||||
\item efficiency is given by:
|
||||
\(\mathfrak{e} = \frac{\sum_i A_i}{\sum_i A_i/\mathfrak{e}_i}\)
|
||||
\end{itemize}
|
||||
|
@ -509,11 +515,11 @@ labelformat=brace, position=top]{subcaption}
|
|||
How do choose the \(\Omega_i\)? \pause {\huge\vegas! :-)}
|
||||
\end{frame}
|
||||
|
||||
\note[itemize]{
|
||||
\item no need to know the jacobian ;)
|
||||
}
|
||||
\begin{frame}{Observables}
|
||||
\begin{itemize}
|
||||
\pnote{
|
||||
- no need to know the jacobian ;)
|
||||
}
|
||||
\begin{itemize}
|
||||
\item we want: distributions of other observables \pause
|
||||
\item turns out: simpliy piping samples \(\{x_i\}\) through a map
|
||||
\(\gamma\colon\Omega\mapsto\mathbb{R}\) is enough
|
||||
|
@ -554,15 +560,15 @@ labelformat=brace, position=top]{subcaption}
|
|||
\sigma_{ij} = \int f_i\qty(x_1;Q^2) f_j\qty(x_2;Q^2) \hat{\sigma}_{ij}\qty(x_1,
|
||||
x_2, Q^2)\dd{x_1}\dd{x_2}
|
||||
\end{equation}
|
||||
\item have to be obtained experimentally (or through lattice QCD\cite{Bhat:2020ktg})
|
||||
\end{itemize}
|
||||
\end{block}
|
||||
\end{frame}
|
||||
|
||||
\subsection{Implementation}
|
||||
\note[itemize]{
|
||||
\item took longest time :P
|
||||
}
|
||||
|
||||
\begin{frame}
|
||||
\pnote{ - took longest time :P }
|
||||
\begin{columns}
|
||||
\begin{column}{.4\textwidth}
|
||||
\begin{block}{What do we need?}
|
||||
|
@ -590,12 +596,11 @@ labelformat=brace, position=top]{subcaption}
|
|||
convolved with PDFs for fixed \protect
|
||||
\result{xs/python/pdf/second_x} in picobarn.}
|
||||
\end{figure}
|
||||
}
|
||||
\only<+>{
|
||||
} \only<+>{
|
||||
\begin{figure}
|
||||
\centering \plot[width=\columnwidth]{pdf/dist3d_eta_const}
|
||||
\caption{\label{fig:dist-pdf-fixed-eta}Differential cross section
|
||||
convolved with PDFs for fixed \protect
|
||||
\caption{\label{fig:dist-pdf-fixed-eta}Differential cross
|
||||
section convolved with PDFs for fixed \protect
|
||||
\result{xs/python/pdf/plot_eta} in picobarn.}
|
||||
\end{figure}
|
||||
}
|
||||
|
@ -633,6 +638,153 @@ labelformat=brace, position=top]{subcaption}
|
|||
\end{figure}
|
||||
\end{frame}
|
||||
|
||||
|
||||
\section{Penomenological Studies}
|
||||
|
||||
\begin{frame}{What is missing?}
|
||||
\pause
|
||||
\begin{itemize}[<+->]
|
||||
\item treatement of the beam remnants
|
||||
\item intrinsic \(\pt\)
|
||||
\item parton showers \pnote{NLO effects}
|
||||
\item hadronization
|
||||
\item (NLO matrix elements)
|
||||
\item multiple interactions
|
||||
\end{itemize}
|
||||
\pause \(\implies\) \sherpa\ can model those effects
|
||||
\end{frame}
|
||||
|
||||
|
||||
\subsection{Set-Up}
|
||||
\begin{frame}
|
||||
\pnote{ - cuts and energies same as before\\
|
||||
- pun intended\\
|
||||
- now discuss impact}
|
||||
\begin{itemize}
|
||||
\item same phase-space cuts and energies as before
|
||||
\item isolation cone cuts
|
||||
\end{itemize}
|
||||
|
||||
\begin{block}{The five Stages}
|
||||
\begin{description}
|
||||
\item[LO] as before
|
||||
\item[LO+PS] parton showers with
|
||||
\emph{CSShower}~\cite{schumann2008:ap}
|
||||
\item[LO+PS+pT] beam remnants and primordial \(\pt\)
|
||||
\item[LO+PS+pT+Hadronization] hadronization with
|
||||
\emph{Ahadic}~\cite{Winter2003:tt}.
|
||||
\item[LO+PS+pT+Hadronization+MI] Multiple Interactions (MI) with
|
||||
\emph{Amisic}~\cite{Bothmann:2019yzt}
|
||||
\end{description}
|
||||
\end{block}
|
||||
\end{frame}
|
||||
|
||||
\subsection{Results}
|
||||
|
||||
\begin{frame}{Transverse Momentum of the \(\gamma\gamma\) System}
|
||||
\begin{columns}
|
||||
\begin{column}{.5\textwidth}
|
||||
\begin{figure}[ht]
|
||||
\rivethist[width=\columnwidth]{pheno/total_pT}
|
||||
\end{figure}
|
||||
\end{column}
|
||||
\begin{column}{.5\textwidth}
|
||||
\begin{itemize}
|
||||
\item photon system acquires recoil momentum
|
||||
\item primordial \(\pt\) enhances xs in low momentum regions
|
||||
\end{itemize}
|
||||
\end{column}
|
||||
\end{columns}
|
||||
\pnote{
|
||||
- parton shower: col-linear limit\\
|
||||
- others the same
|
||||
}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Transverse Momentum of the leading Photon}
|
||||
\begin{columns}
|
||||
\begin{column}{.5\textwidth}
|
||||
\begin{figure}[ht]
|
||||
\rivethist[width=\columnwidth]{pheno/pT}
|
||||
\end{figure}
|
||||
\end{column}
|
||||
\begin{column}{.5\textwidth}
|
||||
\begin{itemize}
|
||||
\item boost to higher \(\pt\)
|
||||
\item all but \stone\ stage largely compatible
|
||||
\end{itemize}
|
||||
\end{column}
|
||||
\end{columns}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Invariant Mass of the \(\gamma\gamma\) System}
|
||||
\begin{columns}
|
||||
\begin{column}{.5\textwidth}
|
||||
\begin{figure}[ht]
|
||||
\rivethist[width=\columnwidth]{pheno/inv_m}
|
||||
\end{figure}
|
||||
\end{column}
|
||||
\begin{column}{.5\textwidth}
|
||||
\begin{itemize}
|
||||
\item events can be recoiled past the cuts (very rare)
|
||||
\item otherwise shape similar to the \stone\ stage
|
||||
\begin{itemize}
|
||||
\item largely governed by the PDF
|
||||
\end{itemize}
|
||||
\end{itemize}
|
||||
\end{column}
|
||||
\end{columns}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Angular Distributions}
|
||||
\begin{figure}[ht]
|
||||
\rivethist[width=.49\columnwidth]{pheno/eta}
|
||||
\rivethist[width=.49\columnwidth]{pheno/cos_theta}
|
||||
\end{figure}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Conclusions}
|
||||
\begin{itemize}
|
||||
\item parton showering and primordial \(\pt\) have biggest effect on
|
||||
shape
|
||||
\item hadronization and multiple interactions give rise to isolation
|
||||
effects
|
||||
\item for angular observables the \stone\ case gives a reasonably
|
||||
good qualitative picture
|
||||
\end{itemize}
|
||||
\pnote{
|
||||
- no qed showers\\
|
||||
- nlo me
|
||||
}
|
||||
\end{frame}
|
||||
|
||||
\section{Summary}
|
||||
\begin{frame}
|
||||
\begin{columns}
|
||||
\begin{column}{.7\textwidth}
|
||||
We have...
|
||||
\begin{itemize}
|
||||
\item calculated the cross section for \(\qqgg\)
|
||||
\item studied and implemented Monte Carlo integration and
|
||||
sampling
|
||||
\begin{itemize}
|
||||
\item using in \vegas\ whenever possible :)
|
||||
\end{itemize}
|
||||
\item built a simple \(\ppgg\) event generator
|
||||
\item looked further down the road with sherpa
|
||||
\end{itemize}
|
||||
\end{column}
|
||||
\pause
|
||||
\begin{column}{.3\textwidth}
|
||||
\includegraphics[width=\columnwidth]{questions.jpeg}
|
||||
\end{column}
|
||||
\end{columns}
|
||||
\begin{center}
|
||||
{\huge Thanks for your attention! Questions: Now!}
|
||||
\end{center}
|
||||
\end{frame}
|
||||
|
||||
|
||||
\begin{frame}[allowframebreaks]
|
||||
\frametitle{References}
|
||||
\printbibliography
|
||||
|
@ -711,4 +863,47 @@ labelformat=brace, position=top]{subcaption}
|
|||
and weighting distribution.}
|
||||
\end{figure}
|
||||
\end{frame}
|
||||
\begin{frame}{Compatibility of Histograms}
|
||||
The compatibility of histograms is tested as described
|
||||
in~\cite{porter2008:te}. The test value
|
||||
is \[T=\sum_{i=1}^k\frac{(u_i-v_i)^2}{u_i+v_i}\] where \(u_i, v_i\)
|
||||
are the number of samples in the \(i\)-th bin of the histograms
|
||||
\(u,v\) and \(k\) is the number of bins. This value is \(\chi^2\)
|
||||
distributed with \(k\) degrees, when the number of samples in the
|
||||
histogram is reasonably high. The mean of this distribution is \(k\)
|
||||
and its standard deviation is \(\sqrt{2k}\). The value
|
||||
\[P = 1 - \int_0^{T}f(x;k)\dd{x}\] states with which probability the
|
||||
\(T\) value would be greater than the obtained one, where \(f\) is the
|
||||
probability density of the \(\chi^2\) distribution. Thus
|
||||
\(P\in [0,1]\) is a measure of confidence for the compatibility of the
|
||||
histograms. These formulas hold, if the total number of events in both
|
||||
histograms is the same.
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Cut Flow}
|
||||
\pnote{
|
||||
- 2 kinds of impact: phase space and isolation\\
|
||||
- these effects have an impact on fiducial xs\\
|
||||
- PS, pT more phase space\\
|
||||
- Hadr. and MI isolation
|
||||
}
|
||||
\begin{table}[ht]
|
||||
\centering
|
||||
\begin{tabular}{l|SSS}
|
||||
&&\multicolumn{2}{c}{events discarded by cuts} \\
|
||||
Stage & {\(\sigma\) [\si{\pico\barn}]} & {phase space
|
||||
[\si{\percent}]} &
|
||||
{isolation
|
||||
[\SI{1e-4}{\percent}]} \\
|
||||
\toprule
|
||||
\stfive & 33.02(7) & 97.63 & 9.56 \\
|
||||
\stfour & 34.08(7) & 97.56 & 1.89\\
|
||||
\stthree & 33.97(7) & 97.56 & 3.52 \\
|
||||
\sttwo & 34.60(7) & 97.52 & 3.63 \\
|
||||
\stone & 38.74(7) & 96.77 & 0 \\
|
||||
|
||||
\end{tabular}
|
||||
\caption{\label{tab:xscut}Cross sections and cut statistics.}
|
||||
\end{table}
|
||||
\end{frame}
|
||||
\end{document}
|
||||
|
|
Loading…
Add table
Reference in a new issue