some theme polish

This commit is contained in:
hiro98 2020-06-25 17:31:41 +02:00
parent 1088d83a85
commit df4f96970b

View file

@ -12,17 +12,25 @@
\usepackage[list=true, font=small,
labelformat=brace, position=top]{subcaption}
%\setbeameroption{show notes on second screen} %
\addbibresource{thesis.bib}
\graphicspath{ {figs/} }
\usepackage{animate}
\usetheme{Antibes}
% \usepackage{eulerpx}
\usepackage{ifdraft}
% \usefonttheme[onlymath]{serif}
\graphicspath{ {figs/} }
\addbibresource{thesis.bib}
\sisetup{separate-uncertainty = true}
\usetheme{default}
\usecolortheme{dolphin}
\usefonttheme{professionalfonts}
%\usepackage{newmathpx}
\institute[TUD] % (optional)
{
IKTP, TU Dresden
}
\setbeamertemplate{itemize items}[default]
\setbeamertemplate{enumerate items}[default]
\AtBeginSection[]
{
\begin{frame}
@ -30,17 +38,23 @@ labelformat=brace, position=top]{subcaption}
\end{frame}
}
\AtBeginSubsection[
{\frame<beamer>{%
\tableofcontents[currentsection,currentsubsection]}}%
]
\AtBeginSubsection[]
{
\begin{frame}
\tableofcontents[currentsubsection]
\end{frame}
}
\setbeamertemplate{footline}[frame number]
\setbeamertemplate{bibliography item}{\insertbiblabel} %% Remove book
%% symbol from references and add
%% number
\setbeamertemplate{bibliography item}{\insertbiblabel}
\newtheorem{results}{Results}
\newenvironment<>{results}[1][Results]{%
\setbeamercolor{block example}{fg=white,bg=red!75!black}%
\begin{exampleblock}#2{#1}}{\end{exampleblock}}
\sisetup{separate-uncertainty = true}
% Macros
%% qqgg
@ -232,7 +246,7 @@ labelformat=brace, position=top]{subcaption}
\subsection{Result}
\begin{frame}
\begin{frame}{Result}
\begin{equation}
\label{eq:averagedm_final}
\langle\abs{\mathcal{M}}^2\rangle = \frac{4}{3}(gZ)^4
@ -352,11 +366,12 @@ labelformat=brace, position=top]{subcaption}
\begin{frame}{Naive Integration Change of Variables}
Choose \(\rho(\vb{x}) = \frac{1}{\abs{\Omega}}\)
\onslide<2->{\(\implies I=\frac{\abs{\Omega}}{N}\sum_{i=1}^N
\onslide<1->{\(\implies I=\frac{\abs{\Omega}}{N}\sum_{i=1}^N
f(\vb{x_i})=\abs{\Omega}\cdot\bar{f}\) and
\(\VAR{\frac{F}{P}}\approx\frac{\abs{\Omega}^2}{N-1}\sum_{i}\qty[f(\vb{x}_i)
- \bar{f}]^2\)}
\begin{block}{Results}
\pause
\begin{results}
\begin{itemize}
\item<3-> integrating \(\dv{\sigma}{\theta}\) with target error of
\(\sigma = \SI{1e-3}{\pico\barn}\) takes
@ -364,15 +379,15 @@ labelformat=brace, position=top]{subcaption}
\item<4-> integrating \(\dv{\sigma}{\eta}\) takes just
\result{xs/python/xs_mc_eta_N} samples
\end{itemize}
\end{block}
\end{results}
\begin{figure}[hb]
\centering \onslide<3->{
\begin{subfigure}[c]{.4\textwidth}
\centering \plot[scale=.6]{xs/xs_integrand}
\begin{subfigure}[c]{.41\textwidth}
\centering \plot[width=\columnwidth]{xs/xs_integrand}
\end{subfigure}
} \onslide<4->{
\begin{subfigure}[c]{.4\textwidth}
\centering \plot[scale=.6]{xs/xs_integrand_eta}
\begin{subfigure}[c]{.41\textwidth}
\centering \plot[width=\columnwidth]{xs/xs_integrand_eta}
\end{subfigure}
}
\end{figure}
@ -396,11 +411,13 @@ labelformat=brace, position=top]{subcaption}
\end{enumerate}
\end{block}
\pause
\begin{block}{Result}
Total function evaluations:
\begin{results}
\begin{itemize}
\item Total function evaluations:
\result{xs/python/xs_mc_θ_vegas_N}\\
(for same accuracy as before)
\end{block}
\end{itemize}
\end{results}
\end{column}
\begin{column}{.5\textwidth}
\begin{figure}[ht]
@ -468,27 +485,29 @@ labelformat=brace, position=top]{subcaption}
\end{itemize}
\end{block}
\begin{block}<+->{Results with \(g=f_{\text{max}}\) }
\begin{results}<+->[Results with \(g=f_{\text{max}}\)]
\begin{itemize}[<+->]
\item<.-> sampling \(\dv{\sigma}{\cos\theta}\):
\result{xs/python/naive_th_samp}
\item sampling \(\dv{\sigma}{\eta}\):
\result{xs/python/eta_eff}
\end{itemize}
\end{block}
\end{results}
\end{frame}
\begin{frame}{Hit or Miss}
\begin{columns}
\begin{column}{.4\textwidth}
\begin{block}<+->{Results with \(g=a\cdot x^2 + b\)} Modest
efficiency gain: \result{xs/python/tuned_th_samp}
\end{block}
\begin{results}<+->[Results with \(g=a\cdot x^2 + b\)]
\begin{itemize}
\item<+-> Modest efficiency gain:
\result{xs/python/tuned_th_samp}
\item<+-> Of course, we can use \vegas\ to provide a better
\(g\implies\) \result{xs/python/strat_th_samp}
\pnote{Has problems, not discussing now.}
\(g\implies\) \result{xs/python/strat_th_samp} \pnote{Has
problems, not discussing now.}
\end{itemize}
\end{results}
\end{column}
\begin{column}{.6\textwidth}
\begin{figure}[ht]
@ -501,18 +520,32 @@ labelformat=brace, position=top]{subcaption}
\end{frame}
\begin{frame}{Stratified Sampling}
\begin{columns}
\begin{column}{.6\textwidth}
\begin{block}{Basic Idea}
\begin{itemize}
\item subdivide sampling volume \(\Omega\) into \(K\) subvolumes
\(\Omega_i\)
\item subdivide sampling volume \(\Omega\) into \(K\)
subvolumes \(\Omega_i\)
\item let \(A_i = \int_{\Omega_i}f(x)\dd{x}\)
\item take \(N_i=\frac{A_i}{\sum_jA_j} \cdot N\) samples in each subvolume
\item take \(N_i=\frac{A_i}{\sum_jA_j} \cdot N\) samples in
each subvolume
\item efficiency is given by:
\(\mathfrak{e} = \frac{\sum_i A_i}{\sum_i A_i/\mathfrak{e}_i}\)
\(\mathfrak{e} = \frac{\sum_i A_i}{\sum_i
A_i/\mathfrak{e}_i}\)
\end{itemize}
\(\implies\) can optimize in each subvolume independently
\end{block}
How do choose the \(\Omega_i\)? \pause {\huge\vegas! :-)}
\end{column}
\pause
\begin{column}{.4\textwidth}
\begin{center}
{\LARGE
How do we choose the \(\Omega_i\)? \pause\\
\vspace{1em}
\(\implies\) \vegas! :-) }
\end{center}
\end{column}
\end{columns}
\end{frame}
\begin{frame}{Observables}
@ -528,12 +561,10 @@ labelformat=brace, position=top]{subcaption}
\begin{figure}[p]
\centering
\begin{subfigure}[b]{.49\textwidth}
\centering \plot[scale=.5]{xs_sampling/histo_sherpa_eta}
\caption{histogram of the pseudo-rapidity (\(\eta\))}
\centering \plot[scale=.7]{xs_sampling/histo_sherpa_eta}
\end{subfigure}
\begin{subfigure}[b]{.49\textwidth}
\centering \plot[scale=.5]{xs_sampling/histo_sherpa_pt}
\caption{histogram of the transverse momentum (\(\pt\))}
\centering \plot[scale=.7]{xs_sampling/histo_sherpa_pt}
\end{subfigure}
\end{figure}
\end{frame}