mirror of
https://github.com/vale981/bachelor_thesis
synced 2025-03-06 01:51:38 -05:00
horrible efficiency
This commit is contained in:
parent
eeae315954
commit
be1ddd9390
3 changed files with 7 additions and 9 deletions
Binary file not shown.
After Width: | Height: | Size: 7.1 KiB |
Binary file not shown.
Before Width: | Height: | Size: 10 KiB |
|
@ -252,7 +252,7 @@ Plotting it, we can see that the variance is reduced.
|
||||||
|
|
||||||
#+RESULTS:
|
#+RESULTS:
|
||||||
:RESULTS:
|
:RESULTS:
|
||||||
| <matplotlib.lines.Line2D | at | 0x7f3574d07820> |
|
| <matplotlib.lines.Line2D | at | 0x7f3562675a90> |
|
||||||
[[file:./.ob-jupyter/5597ca6056db11908cfca64c2090d67e3b94cc9e.png]]
|
[[file:./.ob-jupyter/5597ca6056db11908cfca64c2090d67e3b94cc9e.png]]
|
||||||
:END:
|
:END:
|
||||||
|
|
||||||
|
@ -267,7 +267,7 @@ Lets plot how the pdf looks.
|
||||||
|
|
||||||
#+RESULTS:
|
#+RESULTS:
|
||||||
:RESULTS:
|
:RESULTS:
|
||||||
| <matplotlib.lines.Line2D | at | 0x7f3572b7b8b0> |
|
| <matplotlib.lines.Line2D | at | 0x7f35627bde50> |
|
||||||
[[file:./.ob-jupyter/b92f0c4b2c9f2195ae14444748fcdb7708d81c19.png]]
|
[[file:./.ob-jupyter/b92f0c4b2c9f2195ae14444748fcdb7708d81c19.png]]
|
||||||
:END:
|
:END:
|
||||||
|
|
||||||
|
@ -276,7 +276,7 @@ Now we sample some events. Doing this in parallel helps. We let the os
|
||||||
figure out the cpu mapping.
|
figure out the cpu mapping.
|
||||||
|
|
||||||
#+begin_src jupyter-python :exports both :results raw drawer
|
#+begin_src jupyter-python :exports both :results raw drawer
|
||||||
intervals_η = [interval_η, [.1, 1], [.1, 1]]
|
intervals_η = [interval_η, [.05, 1], [.05, 1]]
|
||||||
|
|
||||||
result, eff = monte_carlo.sample_unweighted_array(
|
result, eff = monte_carlo.sample_unweighted_array(
|
||||||
10000,
|
10000,
|
||||||
|
@ -291,7 +291,7 @@ figure out the cpu mapping.
|
||||||
#+end_src
|
#+end_src
|
||||||
|
|
||||||
#+RESULTS:
|
#+RESULTS:
|
||||||
: 0.003007891162077376
|
: 0.0009801272637920972
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
@ -303,11 +303,9 @@ file.
|
||||||
|
|
||||||
Let's look at a histogramm of eta samples.
|
Let's look at a histogramm of eta samples.
|
||||||
#+begin_src jupyter-python :exports both :results raw drawer
|
#+begin_src jupyter-python :exports both :results raw drawer
|
||||||
draw_histo_auto(result[:, 0], r"$\eta$", bins=100)
|
fig, ax = draw_histo_auto(result[:, 0], r"$\eta$", bins=100)
|
||||||
|
ax.set_yscale("log")
|
||||||
#+end_src
|
#+end_src
|
||||||
|
|
||||||
#+RESULTS:
|
#+RESULTS:
|
||||||
:RESULTS:
|
[[file:./.ob-jupyter/721ccfd2a691a94a1e437f282bf2d95f5de25f0c.png]]
|
||||||
| <Figure | size | 432x288 | with | 1 | Axes> | <matplotlib.axes._subplots.AxesSubplot | at | 0x7f35728b26a0> |
|
|
||||||
[[file:./.ob-jupyter/ec474fc3576110c487c7fb31403cbab0a063efa9.png]]
|
|
||||||
:END:
|
|
||||||
|
|
Loading…
Add table
Reference in a new issue