further write-up of the pdf stuff

This commit is contained in:
hiro98 2020-05-05 18:59:40 +02:00
parent 271a244f79
commit a754e287ec
18 changed files with 201019 additions and 18 deletions

View file

@ -23,6 +23,7 @@ captions=nooneline,captions=tableabove,english]{scrbook}
\input{./tex/pdf.tex}
\input{./tex/pdf/pdf_basics.tex}
\input{./tex/pdf/lab_xs.tex}
\input{./tex/pdf/results.tex}
\appendix
\input{./tex/appendix.tex}

1
latex/figs/pdf Symbolic link
View file

@ -0,0 +1 @@
../../prog/python/qqgg/figs/pdf/

View file

@ -108,6 +108,7 @@ labelformat=brace, position=top]{subcaption}
\newcommand{\sherpa}{\texttt{Sherpa}}
\newcommand{\rivet}{\texttt{Rivet}}
\newcommand{\vegas}{\texttt{VEGAS}}
\newcommand{\lhapdf}{\texttt{LHAPDF6}}
%% Expected Value and Variance
\newcommand{\EX}[1]{\operatorname{E}\qty[#1]}

View file

@ -247,6 +247,12 @@ reference histograms created by generating events with \sherpa\ and
analyzing them with the \rivet toolkit~\cite{Bierlich:2019rhm}. The
utilized analysis can be found in~\ref{sec:simpdiphotriv}.
\begin{figure}[hb]
\centering \plot{xs_sampling/diff_xs_p_t}
\caption{\label{fig:diff-xs-pt} The differential cross section
transformed to \(\pt\).}
\end{figure}
\begin{figure}[p]
\centering
@ -265,12 +271,6 @@ utilized analysis can be found in~\ref{sec:simpdiphotriv}.
include histograms generated by \sherpa\ and \rivet.}
\end{figure}
\begin{figure}[p]
\centering \plot{xs_sampling/diff_xs_p_t}
\caption{\label{fig:diff-xs-pt} The differential cross section
transformed to \(\pt\).}
\end{figure}
Where~\ref{fig:histeta} shows clear resemblance
of~\ref{fig:xs-int-eta}, the sharp peak in~\ref{fig:histpt} around
\(\pt=\SI{100}{\giga\electronvolt}\) seems surprising. When

View file

@ -43,7 +43,7 @@ the pseudo-rapidity one photon.
\begin{equation}
\label{eq:xs-eta-lab}
\dv{\sigma}{\eta} = 2\pi\cdot\frac{\alpha^2Q^4}{24 E_p^2
\dv{\sigma}{\eta} = 2\pi\cdot\frac{\alpha^2Z^4}{24 E_p^2
x_1x_2}\cdot\qty(\tanh(\eta - w)^2 + 1)
\end{equation}

View file

@ -6,7 +6,7 @@
\section{Parton Density Functions}%
\label{sec:pdf_basics}
Parton Density Functions give, restricting the considerations to
Parton Density Functions encode, restricting the considerations to
leading order, the probability to ``encounter'' a constituent parton
(quark or gluon) of a hadron with a certain momentum fraction \(x\) at
a certain factorization scale \(Q^2\). PDFs are normalized according
@ -48,3 +48,8 @@ scale\footnote{More appropriately: The factorization scale depends on
Summing~\eqref{eq:pdf-xs} over all partons in the hadron gives
the total scattering cross section for the hadron.
PDFs can not be derived from first principles and have to be
determined experimentally for low \(Q^2\) and can be evolved to higher
\(Q^2\) through the \emph{DGLAP} equations~\cite{altarelli:1977af} at
different orders of perturbation theory.

79
latex/tex/pdf/results.tex Normal file
View file

@ -0,0 +1,79 @@
%%% Local Variables: ***
%%% mode: latex ***
%%% TeX-master: "../../document.tex" ***
%%% End: ***
\section{Implementation and Results}%
\label{sec:pdf_results}
The considerations of~\ref{sec:pdf_basics} and~\ref{sec:lab_xs} can
now be applied to obtain a cross section and histograms of observables
for the scattering of two protons into two photons. Because the PDF is
not available in closed form, event generation is the only viable way
to verify theory against experiment, even in this simple leading-order
process.
The integrand in~\eqref{eq:pdf-xs} can be concretised
into~\eqref{eq:weighteddist}, where \(q\) runs over all quarks (except
the top quark). The averaged sum accounts for the fact, that the two
protons are indistinguishable. The choice of \(Q^2\) was explained
in~\ref{sec:pdf_basics} and is being given in~\eqref{eq:q2-explicit}.
\begin{gather}
\label{eq:weighteddist}
\frac{\dd[3]{\sigma}}{\dd{\eta}\dd{x_1}\dd{x_2}} =
\sum_q \frac{1}{2}\qty[f_q\qty(x_1;Q^2) f_{\bar{q}}\qty(x_2;Q^2) + f_q\qty(x_2;Q^2) f_{\bar{q}}\qty(x_1;Q^2)] \dv{\sigma(x_1,
x_2, Z_q)}{\eta} \\
\label{eq:q2-explicit}
Q^2 = 2x_1x_2E_p^2
\end{gather}
This distribution can now be integrated to obtain a total
cross-section as described in~\ref{sec:mcint}. Sampling a
multi-dimensional distribution can be reduced to the sampling of one
dimensional distributions by reducing the distribution itself to one
variable through integration over the remaining ones and then, keeping
the first variable fixed, sampling the other variables in a likewise
manner. The hit-or-miss method described in~\ref{sec:hitmiss} has to
be modified only in so far as to choose the sampling points in an
\(n\)-dimensional volume. As before, the range of the \(\eta\)
parameter has to be constrained to obtain physical results. Because
the absolute values of the pseudo rapidities of the two final state
photons are not equal in the lab frame, the shape of the
integration/sampling volume differs from a simple
hypercube \(\Omega\). Furthermore, for the massless limit to be applicable the
center of mass energy of the partonic system must be much greater than
the quark masses. This can be implemented by demanding the
transverse momentum \(p_T\) of a final state photon to be greater than
approximately~\SI{20}{\giga\electronvolt}. A restriction (cut) on
\(p_T\) is suitable because detectors are usually only sensitive above
a certain \(p_T\) threshold. %TODO CITE%
Such cuts can be implemented simply by multiplying the distribution
in~\eqref{eq:weighteddist} by the characteristic function
\(\chi_\Omega\) of \(\Omega\) which is equal to one if \(x\in\Omega\)
and zero otherwise.
The PDF being used in the following has been determined at leading
order and is the central member of the PDF set
\verb|NNPDF31_lo_as_0118| provided by \emph{NNPDF} collaboration and
accessed through the \lhapdf\
library\cite{NNPDF:2017pd}\cite{Buckley:2015lh}.
% TODO clean separation of pdf, pdf set %
The resulting distribution (without cuts) is depicted for fixed
\(x_2\) in~\ref{fig:dist-pdf}.
\begin{figure}[hb]
\centering
\plot{pdf/dist3d_x2_const}
\caption{\label{fig:dist-pdf}Differential cross section convolved with PDFs for fixed
\result{xs/python/pdf/second_x} in picobarn.}
\end{figure}
For \(x_1 = x_2\) the distribution retains some likeness with the
partonic distribution (see~\ref{fig:xs-int-eta}) but gets suppressed
for greater values of \(x_1\). The overall shape of the distribution
is clearly highly sub-optimal for hit-or-miss sampling, only having
significant values when \(x_1\) or \(x_2\) are small and being very
steep. To remedy that, one has to use a more efficient sampling
algorithm (\vegas) or impose very restrictive cuts.

View file

@ -8,7 +8,7 @@
After labeling the incoming quarks and outcoming photons, as well as
the momenta according to~\ref{fig:qqggfeyn}, the feynman rules yield
the matrix elements in~\eqref{eq:matel}, where \(Q\) is the electric
the matrix elements in~\eqref{eq:matel}, where \(Z\) is the electric
charge of the quark and \(g\) is the QED coupling constant. The
respective spinors and polarisation vectors are \(\us,\vs\) and
\(\pe\). The matrix element for~\ref{fig:qqggfeyn2} is obtained by
@ -17,9 +17,9 @@ whenever indices would clutter the notation.
\begin{align}
\label{eq:matel}
\mathcal{M}_1 &= \frac{(gQ)^2}{\qty(p_1 - p_4)^2}\vsb(1)\pses(4)(\ps_1 -
\mathcal{M}_1 &= \frac{(gZ)^2}{\qty(p_1 - p_4)^2}\vsb(1)\pses(4)(\ps_1 -
\ps_4)\pses(3)\us(2)\\
\mathcal{M}_2 &= \frac{(gQ)^2}{\qty(p_1 - p_4)^2}\vsb(1)\pses(3)(\ps_1 - \ps_3)\pses(4)\us(2)
\mathcal{M}_2 &= \frac{(gZ)^2}{\qty(p_1 - p_4)^2}\vsb(1)\pses(3)(\ps_1 - \ps_3)\pses(4)\us(2)
\end{align}
\begin{wrapfigure}{R}{0.4\textwidth}
@ -79,7 +79,7 @@ and \(\Gamma_1\) as in~\eqref{eq:gammadef}.
The total matrix element (the minus sign has been dropped) is given in~\eqref{eq:totalm}.
\begin{equation}
\label{eq:totalm}
\mathcal{M} = \mathcal{M}_1 + \mathcal{M}_2 = \frac{(gQ)^2}{\qty(2p)^2}\vsb(1)\qty(\frac{\Gamma_1}{s'^2}+\frac{\Gamma_2}{c'^2})\us(2)
\mathcal{M} = \mathcal{M}_1 + \mathcal{M}_2 = \frac{(gZ)^2}{\qty(2p)^2}\vsb(1)\qty(\frac{\Gamma_1}{s'^2}+\frac{\Gamma_2}{c'^2})\us(2)
\end{equation}
To obtain an experimentally verifiable cross section the absolute
@ -96,7 +96,7 @@ in the beams).
\begin{equation}
\label{eq:averagedm}
\langle\abs{\mathcal{M}}^2\rangle = \frac{1}{4}\sum_{s_1 s_2}\sum_{\lambda_1
\lambda_2} \abs{\mathcal{M}}^2=\overbrace{\frac{1}{3}\frac{1}{4}\frac{\qty(gQ)^4}{\qty(2p)^4}}^\mathfrak{F}\sum_{\lambda_1
\lambda_2} \abs{\mathcal{M}}^2=\overbrace{\frac{1}{3}\frac{1}{4}\frac{\qty(gZ)^4}{\qty(2p)^4}}^\mathfrak{F}\sum_{\lambda_1
\lambda_2}\tr[\qty(\frac{\Gamma_1}{s'^2}+\frac{\Gamma_2}{c'^2})
\ps_2\qty(\frac{\bar{\Gamma}_1}{s'^2}+\frac{\bar{\Gamma}_2}{c'^2})\ps_1]
\end{equation}
@ -181,8 +181,8 @@ terms of the pseudo-rapidity \(\eta \equiv -\ln[\tan(\frac{\theta}{2})]\).
\begin{split}
\langle\abs{\mathcal{M}}^2\rangle &= p^4\cdot\mathfrak{F}\cdot
32\cdot\qty[\frac{(1-c)(1+c)}{s'^4}] + \qty[\frac{(1-c)(1+c)}{c'^4}] \\
&= \frac{4}{3}(gQ)^4 \cdot\frac{1+\cos^2(\theta)}{\sin^2(\theta)} =
\frac{4}{3}(gQ)^4\cdot(2\cosh(\eta) - 1)
&= \frac{4}{3}(gZ)^4 \cdot\frac{1+\cos^2(\theta)}{\sin^2(\theta)} =
\frac{4}{3}(gZ)^4\cdot(2\cosh(\eta) - 1)
\end{split}
\end{equation}

View file

@ -21,9 +21,9 @@ two identical photons in the final state.
\dv{\sigma}{\Omega} &=
\frac{1}{2}\frac{1}{(8\pi)^2}\cdot\frac{\abs{\mathcal{M}}^2}{\ecm^2}\cdot\frac{\abs{p_f}}{\abs{p_i}}
=
\underbrace{\frac{\alpha^2Q^4}{6\ecm^2}}_{\mathfrak{C}}\frac{1+\cos^2(\theta)}{\sin^2(\theta)}\label{eq:crossec}
\underbrace{\frac{\alpha^2Z^4}{6\ecm^2}}_{\mathfrak{C}}\frac{1+\cos^2(\theta)}{\sin^2(\theta)}\label{eq:crossec}
\\
\dv{\sigma}{\eta} &= 2\pi\cdot\frac{\alpha^2Q^4}{6\ecm^2}\cdot\qty(\tanh(\eta)^2 + 1)\label{eq:xs-eta}
\dv{\sigma}{\eta} &= 2\pi\cdot\frac{\alpha^2Z^4}{6\ecm^2}\cdot\qty(\tanh(\eta)^2 + 1)\label{eq:xs-eta}
\end{align}
\begin{figure}[ht]
@ -74,7 +74,7 @@ in~\eqref{eq:total-crossec}.
- \artanh(\cos(\theta_2))]} \\
&=2\pi\mathfrak{C}\cdot\qty[\tanh(\eta_2) - \tanh(\eta_1) + 2(\eta_1
- \eta_2))] \\
&={\frac{\pi\alpha^2Q^4}{3\ecm^2}}\cdot\qty[\tanh(\eta_2) - \tanh(\eta_1) + 2(\eta_1
&={\frac{\pi\alpha^2Z^4}{3\ecm^2}}\cdot\qty[\tanh(\eta_2) - \tanh(\eta_1) + 2(\eta_1
- \eta_2))]
\end{split}
\end{equation}

View file

@ -78,3 +78,59 @@
volume = 8,
year = 2020
}
@article{Buckley:2015lh,
title = {LHAPDF6: parton density access in the LHC precision
era},
volume = {75},
ISSN = {1434-6052},
url = {http://dx.doi.org/10.1140/epjc/s10052-015-3318-8},
DOI = {10.1140/epjc/s10052-015-3318-8},
number = {3},
journal = {The European Physical Journal C},
publisher = {Springer Science and Business Media LLC},
author = {Buckley, Andy and Ferrando, James and Lloyd, Stephen
and Nordström, Karl and Page, Ben and Rüfenacht,
Martin and Schönherr, Marek and Watt, Graeme},
year = {2015},
month = {Mar}
}
@misc{NNPDF:2017pd,
title = {Parton distributions from high-precision collider
data},
author = {The NNPDF Collaboration and Richard D. Ball and
Valerio Bertone and Stefano Carrazza and Luigi Del
Debbio and Stefano Forte and Patrick Groth-Merrild
and Alberto Guffanti and Nathan P. Hartland and
Zahari Kassabov and José I. Latorre and Emanuele
R. Nocera and Juan Rojo and Luca Rottoli and Emma
Slade and Maria Ubiali},
year = {2017},
eprint = {1706.00428},
archivePrefix ={arXiv},
primaryClass = {hep-ph}
}
@article{altarelli:1977af,
title = "Asymptotic freedom in parton language",
journal = "Nuclear Physics B",
volume = "126",
number = "2",
pages = "298 - 318",
year = "1977",
issn = "0550-3213",
doi = "https://doi.org/10.1016/0550-3213(77)90384-4",
url =
"http://www.sciencedirect.com/science/article/pii/0550321377903844",
author = "G. Altarelli and G. Parisi",
abstract = "A novel derivation of the Q2 dependence of quark and
gluon densities (of given helicity) as predicted by
quantum chromodynamics is presented. The main body
of predictions of the theory for deep-inleastic
scattering on either unpolarized or polarized
targets is re-obtained by a method which only makes
use of the simplest tree diagrams and is entirely
phrased in parton language with no reference to the
conventional operator formalism."
}

View file

@ -134,6 +134,8 @@ Viele Gruesse, Frank
** Sind quark verhaeltnisse in PDF enthalten (2:1 fuer proton)
** beide finalstate photonen behalten?
** TODO PDF members
** TODO Sensitivity detectors cite!
** TODO was fuer eine pdf ist das NNPDF31lo
* Work Log
** 18.03
- habe mich in manche konzeptionelle Dinge ziemlich verrannt!

Binary file not shown.

After

Width:  |  Height:  |  Size: 354 B

Binary file not shown.

File diff suppressed because it is too large Load diff

Binary file not shown.

After

Width:  |  Height:  |  Size: 354 B

Binary file not shown.

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1 @@
\(x_2 = 0.01\)