mirror of
https://github.com/vale981/bachelor_thesis
synced 2025-03-05 09:31:42 -05:00
further write-up of the pdf stuff
This commit is contained in:
parent
271a244f79
commit
a754e287ec
18 changed files with 201019 additions and 18 deletions
|
@ -23,6 +23,7 @@ captions=nooneline,captions=tableabove,english]{scrbook}
|
|||
\input{./tex/pdf.tex}
|
||||
\input{./tex/pdf/pdf_basics.tex}
|
||||
\input{./tex/pdf/lab_xs.tex}
|
||||
\input{./tex/pdf/results.tex}
|
||||
|
||||
\appendix
|
||||
\input{./tex/appendix.tex}
|
||||
|
|
1
latex/figs/pdf
Symbolic link
1
latex/figs/pdf
Symbolic link
|
@ -0,0 +1 @@
|
|||
../../prog/python/qqgg/figs/pdf/
|
|
@ -108,6 +108,7 @@ labelformat=brace, position=top]{subcaption}
|
|||
\newcommand{\sherpa}{\texttt{Sherpa}}
|
||||
\newcommand{\rivet}{\texttt{Rivet}}
|
||||
\newcommand{\vegas}{\texttt{VEGAS}}
|
||||
\newcommand{\lhapdf}{\texttt{LHAPDF6}}
|
||||
|
||||
%% Expected Value and Variance
|
||||
\newcommand{\EX}[1]{\operatorname{E}\qty[#1]}
|
||||
|
|
|
@ -247,6 +247,12 @@ reference histograms created by generating events with \sherpa\ and
|
|||
analyzing them with the \rivet toolkit~\cite{Bierlich:2019rhm}. The
|
||||
utilized analysis can be found in~\ref{sec:simpdiphotriv}.
|
||||
|
||||
\begin{figure}[hb]
|
||||
\centering \plot{xs_sampling/diff_xs_p_t}
|
||||
\caption{\label{fig:diff-xs-pt} The differential cross section
|
||||
transformed to \(\pt\).}
|
||||
\end{figure}
|
||||
|
||||
\begin{figure}[p]
|
||||
\centering
|
||||
|
||||
|
@ -265,12 +271,6 @@ utilized analysis can be found in~\ref{sec:simpdiphotriv}.
|
|||
include histograms generated by \sherpa\ and \rivet.}
|
||||
\end{figure}
|
||||
|
||||
\begin{figure}[p]
|
||||
\centering \plot{xs_sampling/diff_xs_p_t}
|
||||
\caption{\label{fig:diff-xs-pt} The differential cross section
|
||||
transformed to \(\pt\).}
|
||||
\end{figure}
|
||||
|
||||
Where~\ref{fig:histeta} shows clear resemblance
|
||||
of~\ref{fig:xs-int-eta}, the sharp peak in~\ref{fig:histpt} around
|
||||
\(\pt=\SI{100}{\giga\electronvolt}\) seems surprising. When
|
||||
|
|
|
@ -43,7 +43,7 @@ the pseudo-rapidity one photon.
|
|||
|
||||
\begin{equation}
|
||||
\label{eq:xs-eta-lab}
|
||||
\dv{\sigma}{\eta} = 2\pi\cdot\frac{\alpha^2Q^4}{24 E_p^2
|
||||
\dv{\sigma}{\eta} = 2\pi\cdot\frac{\alpha^2Z^4}{24 E_p^2
|
||||
x_1x_2}\cdot\qty(\tanh(\eta - w)^2 + 1)
|
||||
\end{equation}
|
||||
|
||||
|
|
|
@ -6,7 +6,7 @@
|
|||
\section{Parton Density Functions}%
|
||||
\label{sec:pdf_basics}
|
||||
|
||||
Parton Density Functions give, restricting the considerations to
|
||||
Parton Density Functions encode, restricting the considerations to
|
||||
leading order, the probability to ``encounter'' a constituent parton
|
||||
(quark or gluon) of a hadron with a certain momentum fraction \(x\) at
|
||||
a certain factorization scale \(Q^2\). PDFs are normalized according
|
||||
|
@ -48,3 +48,8 @@ scale\footnote{More appropriately: The factorization scale depends on
|
|||
|
||||
Summing~\eqref{eq:pdf-xs} over all partons in the hadron gives
|
||||
the total scattering cross section for the hadron.
|
||||
|
||||
PDFs can not be derived from first principles and have to be
|
||||
determined experimentally for low \(Q^2\) and can be evolved to higher
|
||||
\(Q^2\) through the \emph{DGLAP} equations~\cite{altarelli:1977af} at
|
||||
different orders of perturbation theory.
|
||||
|
|
79
latex/tex/pdf/results.tex
Normal file
79
latex/tex/pdf/results.tex
Normal file
|
@ -0,0 +1,79 @@
|
|||
%%% Local Variables: ***
|
||||
%%% mode: latex ***
|
||||
%%% TeX-master: "../../document.tex" ***
|
||||
%%% End: ***
|
||||
|
||||
\section{Implementation and Results}%
|
||||
\label{sec:pdf_results}
|
||||
|
||||
The considerations of~\ref{sec:pdf_basics} and~\ref{sec:lab_xs} can
|
||||
now be applied to obtain a cross section and histograms of observables
|
||||
for the scattering of two protons into two photons. Because the PDF is
|
||||
not available in closed form, event generation is the only viable way
|
||||
to verify theory against experiment, even in this simple leading-order
|
||||
process.
|
||||
|
||||
The integrand in~\eqref{eq:pdf-xs} can be concretised
|
||||
into~\eqref{eq:weighteddist}, where \(q\) runs over all quarks (except
|
||||
the top quark). The averaged sum accounts for the fact, that the two
|
||||
protons are indistinguishable. The choice of \(Q^2\) was explained
|
||||
in~\ref{sec:pdf_basics} and is being given in~\eqref{eq:q2-explicit}.
|
||||
|
||||
\begin{gather}
|
||||
\label{eq:weighteddist}
|
||||
\frac{\dd[3]{\sigma}}{\dd{\eta}\dd{x_1}\dd{x_2}} =
|
||||
\sum_q \frac{1}{2}\qty[f_q\qty(x_1;Q^2) f_{\bar{q}}\qty(x_2;Q^2) + f_q\qty(x_2;Q^2) f_{\bar{q}}\qty(x_1;Q^2)] \dv{\sigma(x_1,
|
||||
x_2, Z_q)}{\eta} \\
|
||||
\label{eq:q2-explicit}
|
||||
Q^2 = 2x_1x_2E_p^2
|
||||
\end{gather}
|
||||
|
||||
This distribution can now be integrated to obtain a total
|
||||
cross-section as described in~\ref{sec:mcint}. Sampling a
|
||||
multi-dimensional distribution can be reduced to the sampling of one
|
||||
dimensional distributions by reducing the distribution itself to one
|
||||
variable through integration over the remaining ones and then, keeping
|
||||
the first variable fixed, sampling the other variables in a likewise
|
||||
manner. The hit-or-miss method described in~\ref{sec:hitmiss} has to
|
||||
be modified only in so far as to choose the sampling points in an
|
||||
\(n\)-dimensional volume. As before, the range of the \(\eta\)
|
||||
parameter has to be constrained to obtain physical results. Because
|
||||
the absolute values of the pseudo rapidities of the two final state
|
||||
photons are not equal in the lab frame, the shape of the
|
||||
integration/sampling volume differs from a simple
|
||||
hypercube \(\Omega\). Furthermore, for the massless limit to be applicable the
|
||||
center of mass energy of the partonic system must be much greater than
|
||||
the quark masses. This can be implemented by demanding the
|
||||
transverse momentum \(p_T\) of a final state photon to be greater than
|
||||
approximately~\SI{20}{\giga\electronvolt}. A restriction (cut) on
|
||||
\(p_T\) is suitable because detectors are usually only sensitive above
|
||||
a certain \(p_T\) threshold. %TODO CITE%
|
||||
Such cuts can be implemented simply by multiplying the distribution
|
||||
in~\eqref{eq:weighteddist} by the characteristic function
|
||||
\(\chi_\Omega\) of \(\Omega\) which is equal to one if \(x\in\Omega\)
|
||||
and zero otherwise.
|
||||
|
||||
The PDF being used in the following has been determined at leading
|
||||
order and is the central member of the PDF set
|
||||
\verb|NNPDF31_lo_as_0118| provided by \emph{NNPDF} collaboration and
|
||||
accessed through the \lhapdf\
|
||||
library\cite{NNPDF:2017pd}\cite{Buckley:2015lh}.
|
||||
% TODO clean separation of pdf, pdf set %
|
||||
|
||||
The resulting distribution (without cuts) is depicted for fixed
|
||||
\(x_2\) in~\ref{fig:dist-pdf}.
|
||||
|
||||
\begin{figure}[hb]
|
||||
\centering
|
||||
\plot{pdf/dist3d_x2_const}
|
||||
\caption{\label{fig:dist-pdf}Differential cross section convolved with PDFs for fixed
|
||||
\result{xs/python/pdf/second_x} in picobarn.}
|
||||
\end{figure}
|
||||
|
||||
For \(x_1 = x_2\) the distribution retains some likeness with the
|
||||
partonic distribution (see~\ref{fig:xs-int-eta}) but gets suppressed
|
||||
for greater values of \(x_1\). The overall shape of the distribution
|
||||
is clearly highly sub-optimal for hit-or-miss sampling, only having
|
||||
significant values when \(x_1\) or \(x_2\) are small and being very
|
||||
steep. To remedy that, one has to use a more efficient sampling
|
||||
algorithm (\vegas) or impose very restrictive cuts.
|
|
@ -8,7 +8,7 @@
|
|||
|
||||
After labeling the incoming quarks and outcoming photons, as well as
|
||||
the momenta according to~\ref{fig:qqggfeyn}, the feynman rules yield
|
||||
the matrix elements in~\eqref{eq:matel}, where \(Q\) is the electric
|
||||
the matrix elements in~\eqref{eq:matel}, where \(Z\) is the electric
|
||||
charge of the quark and \(g\) is the QED coupling constant. The
|
||||
respective spinors and polarisation vectors are \(\us,\vs\) and
|
||||
\(\pe\). The matrix element for~\ref{fig:qqggfeyn2} is obtained by
|
||||
|
@ -17,9 +17,9 @@ whenever indices would clutter the notation.
|
|||
|
||||
\begin{align}
|
||||
\label{eq:matel}
|
||||
\mathcal{M}_1 &= \frac{(gQ)^2}{\qty(p_1 - p_4)^2}\vsb(1)\pses(4)(\ps_1 -
|
||||
\mathcal{M}_1 &= \frac{(gZ)^2}{\qty(p_1 - p_4)^2}\vsb(1)\pses(4)(\ps_1 -
|
||||
\ps_4)\pses(3)\us(2)\\
|
||||
\mathcal{M}_2 &= \frac{(gQ)^2}{\qty(p_1 - p_4)^2}\vsb(1)\pses(3)(\ps_1 - \ps_3)\pses(4)\us(2)
|
||||
\mathcal{M}_2 &= \frac{(gZ)^2}{\qty(p_1 - p_4)^2}\vsb(1)\pses(3)(\ps_1 - \ps_3)\pses(4)\us(2)
|
||||
\end{align}
|
||||
|
||||
\begin{wrapfigure}{R}{0.4\textwidth}
|
||||
|
@ -79,7 +79,7 @@ and \(\Gamma_1\) as in~\eqref{eq:gammadef}.
|
|||
The total matrix element (the minus sign has been dropped) is given in~\eqref{eq:totalm}.
|
||||
\begin{equation}
|
||||
\label{eq:totalm}
|
||||
\mathcal{M} = \mathcal{M}_1 + \mathcal{M}_2 = \frac{(gQ)^2}{\qty(2p)^2}\vsb(1)\qty(\frac{\Gamma_1}{s'^2}+\frac{\Gamma_2}{c'^2})\us(2)
|
||||
\mathcal{M} = \mathcal{M}_1 + \mathcal{M}_2 = \frac{(gZ)^2}{\qty(2p)^2}\vsb(1)\qty(\frac{\Gamma_1}{s'^2}+\frac{\Gamma_2}{c'^2})\us(2)
|
||||
\end{equation}
|
||||
|
||||
To obtain an experimentally verifiable cross section the absolute
|
||||
|
@ -96,7 +96,7 @@ in the beams).
|
|||
\begin{equation}
|
||||
\label{eq:averagedm}
|
||||
\langle\abs{\mathcal{M}}^2\rangle = \frac{1}{4}\sum_{s_1 s_2}\sum_{\lambda_1
|
||||
\lambda_2} \abs{\mathcal{M}}^2=\overbrace{\frac{1}{3}\frac{1}{4}\frac{\qty(gQ)^4}{\qty(2p)^4}}^\mathfrak{F}\sum_{\lambda_1
|
||||
\lambda_2} \abs{\mathcal{M}}^2=\overbrace{\frac{1}{3}\frac{1}{4}\frac{\qty(gZ)^4}{\qty(2p)^4}}^\mathfrak{F}\sum_{\lambda_1
|
||||
\lambda_2}\tr[\qty(\frac{\Gamma_1}{s'^2}+\frac{\Gamma_2}{c'^2})
|
||||
\ps_2\qty(\frac{\bar{\Gamma}_1}{s'^2}+\frac{\bar{\Gamma}_2}{c'^2})\ps_1]
|
||||
\end{equation}
|
||||
|
@ -181,8 +181,8 @@ terms of the pseudo-rapidity \(\eta \equiv -\ln[\tan(\frac{\theta}{2})]\).
|
|||
\begin{split}
|
||||
\langle\abs{\mathcal{M}}^2\rangle &= p^4\cdot\mathfrak{F}\cdot
|
||||
32\cdot\qty[\frac{(1-c)(1+c)}{s'^4}] + \qty[\frac{(1-c)(1+c)}{c'^4}] \\
|
||||
&= \frac{4}{3}(gQ)^4 \cdot\frac{1+\cos^2(\theta)}{\sin^2(\theta)} =
|
||||
\frac{4}{3}(gQ)^4\cdot(2\cosh(\eta) - 1)
|
||||
&= \frac{4}{3}(gZ)^4 \cdot\frac{1+\cos^2(\theta)}{\sin^2(\theta)} =
|
||||
\frac{4}{3}(gZ)^4\cdot(2\cosh(\eta) - 1)
|
||||
\end{split}
|
||||
\end{equation}
|
||||
|
||||
|
|
|
@ -21,9 +21,9 @@ two identical photons in the final state.
|
|||
\dv{\sigma}{\Omega} &=
|
||||
\frac{1}{2}\frac{1}{(8\pi)^2}\cdot\frac{\abs{\mathcal{M}}^2}{\ecm^2}\cdot\frac{\abs{p_f}}{\abs{p_i}}
|
||||
=
|
||||
\underbrace{\frac{\alpha^2Q^4}{6\ecm^2}}_{\mathfrak{C}}\frac{1+\cos^2(\theta)}{\sin^2(\theta)}\label{eq:crossec}
|
||||
\underbrace{\frac{\alpha^2Z^4}{6\ecm^2}}_{\mathfrak{C}}\frac{1+\cos^2(\theta)}{\sin^2(\theta)}\label{eq:crossec}
|
||||
\\
|
||||
\dv{\sigma}{\eta} &= 2\pi\cdot\frac{\alpha^2Q^4}{6\ecm^2}\cdot\qty(\tanh(\eta)^2 + 1)\label{eq:xs-eta}
|
||||
\dv{\sigma}{\eta} &= 2\pi\cdot\frac{\alpha^2Z^4}{6\ecm^2}\cdot\qty(\tanh(\eta)^2 + 1)\label{eq:xs-eta}
|
||||
\end{align}
|
||||
|
||||
\begin{figure}[ht]
|
||||
|
@ -74,7 +74,7 @@ in~\eqref{eq:total-crossec}.
|
|||
- \artanh(\cos(\theta_2))]} \\
|
||||
&=2\pi\mathfrak{C}\cdot\qty[\tanh(\eta_2) - \tanh(\eta_1) + 2(\eta_1
|
||||
- \eta_2))] \\
|
||||
&={\frac{\pi\alpha^2Q^4}{3\ecm^2}}\cdot\qty[\tanh(\eta_2) - \tanh(\eta_1) + 2(\eta_1
|
||||
&={\frac{\pi\alpha^2Z^4}{3\ecm^2}}\cdot\qty[\tanh(\eta_2) - \tanh(\eta_1) + 2(\eta_1
|
||||
- \eta_2))]
|
||||
\end{split}
|
||||
\end{equation}
|
||||
|
|
|
@ -78,3 +78,59 @@
|
|||
volume = 8,
|
||||
year = 2020
|
||||
}
|
||||
|
||||
@article{Buckley:2015lh,
|
||||
title = {LHAPDF6: parton density access in the LHC precision
|
||||
era},
|
||||
volume = {75},
|
||||
ISSN = {1434-6052},
|
||||
url = {http://dx.doi.org/10.1140/epjc/s10052-015-3318-8},
|
||||
DOI = {10.1140/epjc/s10052-015-3318-8},
|
||||
number = {3},
|
||||
journal = {The European Physical Journal C},
|
||||
publisher = {Springer Science and Business Media LLC},
|
||||
author = {Buckley, Andy and Ferrando, James and Lloyd, Stephen
|
||||
and Nordström, Karl and Page, Ben and Rüfenacht,
|
||||
Martin and Schönherr, Marek and Watt, Graeme},
|
||||
year = {2015},
|
||||
month = {Mar}
|
||||
}
|
||||
|
||||
@misc{NNPDF:2017pd,
|
||||
title = {Parton distributions from high-precision collider
|
||||
data},
|
||||
author = {The NNPDF Collaboration and Richard D. Ball and
|
||||
Valerio Bertone and Stefano Carrazza and Luigi Del
|
||||
Debbio and Stefano Forte and Patrick Groth-Merrild
|
||||
and Alberto Guffanti and Nathan P. Hartland and
|
||||
Zahari Kassabov and José I. Latorre and Emanuele
|
||||
R. Nocera and Juan Rojo and Luca Rottoli and Emma
|
||||
Slade and Maria Ubiali},
|
||||
year = {2017},
|
||||
eprint = {1706.00428},
|
||||
archivePrefix ={arXiv},
|
||||
primaryClass = {hep-ph}
|
||||
}
|
||||
|
||||
@article{altarelli:1977af,
|
||||
title = "Asymptotic freedom in parton language",
|
||||
journal = "Nuclear Physics B",
|
||||
volume = "126",
|
||||
number = "2",
|
||||
pages = "298 - 318",
|
||||
year = "1977",
|
||||
issn = "0550-3213",
|
||||
doi = "https://doi.org/10.1016/0550-3213(77)90384-4",
|
||||
url =
|
||||
"http://www.sciencedirect.com/science/article/pii/0550321377903844",
|
||||
author = "G. Altarelli and G. Parisi",
|
||||
abstract = "A novel derivation of the Q2 dependence of quark and
|
||||
gluon densities (of given helicity) as predicted by
|
||||
quantum chromodynamics is presented. The main body
|
||||
of predictions of the theory for deep-inleastic
|
||||
scattering on either unpolarized or polarized
|
||||
targets is re-obtained by a method which only makes
|
||||
use of the simplest tree diagrams and is entirely
|
||||
phrased in parton language with no reference to the
|
||||
conventional operator formalism."
|
||||
}
|
||||
|
|
|
@ -134,6 +134,8 @@ Viele Gruesse, Frank
|
|||
** Sind quark verhaeltnisse in PDF enthalten (2:1 fuer proton)
|
||||
** beide finalstate photonen behalten?
|
||||
** TODO PDF members
|
||||
** TODO Sensitivity detectors cite!
|
||||
** TODO was fuer eine pdf ist das NNPDF31lo
|
||||
* Work Log
|
||||
** 18.03
|
||||
- habe mich in manche konzeptionelle Dinge ziemlich verrannt!
|
||||
|
|
BIN
prog/python/qqgg/figs/pdf/dist3d-img0.png
Normal file
BIN
prog/python/qqgg/figs/pdf/dist3d-img0.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 354 B |
BIN
prog/python/qqgg/figs/pdf/dist3d.pdf
Normal file
BIN
prog/python/qqgg/figs/pdf/dist3d.pdf
Normal file
Binary file not shown.
145487
prog/python/qqgg/figs/pdf/dist3d.pgf
Normal file
145487
prog/python/qqgg/figs/pdf/dist3d.pgf
Normal file
File diff suppressed because it is too large
Load diff
BIN
prog/python/qqgg/figs/pdf/dist3d_x2_const-img0.png
Normal file
BIN
prog/python/qqgg/figs/pdf/dist3d_x2_const-img0.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 354 B |
BIN
prog/python/qqgg/figs/pdf/dist3d_x2_const.pdf
Normal file
BIN
prog/python/qqgg/figs/pdf/dist3d_x2_const.pdf
Normal file
Binary file not shown.
55368
prog/python/qqgg/figs/pdf/dist3d_x2_const.pgf
Normal file
55368
prog/python/qqgg/figs/pdf/dist3d_x2_const.pgf
Normal file
File diff suppressed because it is too large
Load diff
1
prog/python/qqgg/results/pdf/second_x.tex
Normal file
1
prog/python/qqgg/results/pdf/second_x.tex
Normal file
|
@ -0,0 +1 @@
|
|||
\(x_2 = 0.01\)
|
Loading…
Add table
Reference in a new issue