some minor investigations of the vegas algo

This commit is contained in:
hiro98 2020-05-13 19:47:28 +02:00
parent 8aaad355da
commit 9f775888ca
3 changed files with 43 additions and 877 deletions

View file

@ -1,861 +0,0 @@
<!DOCTYPE html>
<!-- Generated by Cython 0.29.17 -->
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<title>Cython: lab_xs.pyx</title>
<style type="text/css">
body.cython { font-family: courier; font-size: 12; }
.cython.tag { }
.cython.line { margin: 0em }
.cython.code { font-size: 9; color: #444444; display: none; margin: 0px 0px 0px 8px; border-left: 8px none; }
.cython.line .run { background-color: #B0FFB0; }
.cython.line .mis { background-color: #FFB0B0; }
.cython.code.run { border-left: 8px solid #B0FFB0; }
.cython.code.mis { border-left: 8px solid #FFB0B0; }
.cython.code .py_c_api { color: red; }
.cython.code .py_macro_api { color: #FF7000; }
.cython.code .pyx_c_api { color: #FF3000; }
.cython.code .pyx_macro_api { color: #FF7000; }
.cython.code .refnanny { color: #FFA000; }
.cython.code .trace { color: #FFA000; }
.cython.code .error_goto { color: #FFA000; }
.cython.code .coerce { color: #008000; border: 1px dotted #008000 }
.cython.code .py_attr { color: #FF0000; font-weight: bold; }
.cython.code .c_attr { color: #0000FF; }
.cython.code .py_call { color: #FF0000; font-weight: bold; }
.cython.code .c_call { color: #0000FF; }
.cython.score-0 {background-color: #FFFFff;}
.cython.score-1 {background-color: #FFFFe7;}
.cython.score-2 {background-color: #FFFFd4;}
.cython.score-3 {background-color: #FFFFc4;}
.cython.score-4 {background-color: #FFFFb6;}
.cython.score-5 {background-color: #FFFFaa;}
.cython.score-6 {background-color: #FFFF9f;}
.cython.score-7 {background-color: #FFFF96;}
.cython.score-8 {background-color: #FFFF8d;}
.cython.score-9 {background-color: #FFFF86;}
.cython.score-10 {background-color: #FFFF7f;}
.cython.score-11 {background-color: #FFFF79;}
.cython.score-12 {background-color: #FFFF73;}
.cython.score-13 {background-color: #FFFF6e;}
.cython.score-14 {background-color: #FFFF6a;}
.cython.score-15 {background-color: #FFFF66;}
.cython.score-16 {background-color: #FFFF62;}
.cython.score-17 {background-color: #FFFF5e;}
.cython.score-18 {background-color: #FFFF5b;}
.cython.score-19 {background-color: #FFFF57;}
.cython.score-20 {background-color: #FFFF55;}
.cython.score-21 {background-color: #FFFF52;}
.cython.score-22 {background-color: #FFFF4f;}
.cython.score-23 {background-color: #FFFF4d;}
.cython.score-24 {background-color: #FFFF4b;}
.cython.score-25 {background-color: #FFFF48;}
.cython.score-26 {background-color: #FFFF46;}
.cython.score-27 {background-color: #FFFF44;}
.cython.score-28 {background-color: #FFFF43;}
.cython.score-29 {background-color: #FFFF41;}
.cython.score-30 {background-color: #FFFF3f;}
.cython.score-31 {background-color: #FFFF3e;}
.cython.score-32 {background-color: #FFFF3c;}
.cython.score-33 {background-color: #FFFF3b;}
.cython.score-34 {background-color: #FFFF39;}
.cython.score-35 {background-color: #FFFF38;}
.cython.score-36 {background-color: #FFFF37;}
.cython.score-37 {background-color: #FFFF36;}
.cython.score-38 {background-color: #FFFF35;}
.cython.score-39 {background-color: #FFFF34;}
.cython.score-40 {background-color: #FFFF33;}
.cython.score-41 {background-color: #FFFF32;}
.cython.score-42 {background-color: #FFFF31;}
.cython.score-43 {background-color: #FFFF30;}
.cython.score-44 {background-color: #FFFF2f;}
.cython.score-45 {background-color: #FFFF2e;}
.cython.score-46 {background-color: #FFFF2d;}
.cython.score-47 {background-color: #FFFF2c;}
.cython.score-48 {background-color: #FFFF2b;}
.cython.score-49 {background-color: #FFFF2b;}
.cython.score-50 {background-color: #FFFF2a;}
.cython.score-51 {background-color: #FFFF29;}
.cython.score-52 {background-color: #FFFF29;}
.cython.score-53 {background-color: #FFFF28;}
.cython.score-54 {background-color: #FFFF27;}
.cython.score-55 {background-color: #FFFF27;}
.cython.score-56 {background-color: #FFFF26;}
.cython.score-57 {background-color: #FFFF26;}
.cython.score-58 {background-color: #FFFF25;}
.cython.score-59 {background-color: #FFFF24;}
.cython.score-60 {background-color: #FFFF24;}
.cython.score-61 {background-color: #FFFF23;}
.cython.score-62 {background-color: #FFFF23;}
.cython.score-63 {background-color: #FFFF22;}
.cython.score-64 {background-color: #FFFF22;}
.cython.score-65 {background-color: #FFFF22;}
.cython.score-66 {background-color: #FFFF21;}
.cython.score-67 {background-color: #FFFF21;}
.cython.score-68 {background-color: #FFFF20;}
.cython.score-69 {background-color: #FFFF20;}
.cython.score-70 {background-color: #FFFF1f;}
.cython.score-71 {background-color: #FFFF1f;}
.cython.score-72 {background-color: #FFFF1f;}
.cython.score-73 {background-color: #FFFF1e;}
.cython.score-74 {background-color: #FFFF1e;}
.cython.score-75 {background-color: #FFFF1e;}
.cython.score-76 {background-color: #FFFF1d;}
.cython.score-77 {background-color: #FFFF1d;}
.cython.score-78 {background-color: #FFFF1c;}
.cython.score-79 {background-color: #FFFF1c;}
.cython.score-80 {background-color: #FFFF1c;}
.cython.score-81 {background-color: #FFFF1c;}
.cython.score-82 {background-color: #FFFF1b;}
.cython.score-83 {background-color: #FFFF1b;}
.cython.score-84 {background-color: #FFFF1b;}
.cython.score-85 {background-color: #FFFF1a;}
.cython.score-86 {background-color: #FFFF1a;}
.cython.score-87 {background-color: #FFFF1a;}
.cython.score-88 {background-color: #FFFF1a;}
.cython.score-89 {background-color: #FFFF19;}
.cython.score-90 {background-color: #FFFF19;}
.cython.score-91 {background-color: #FFFF19;}
.cython.score-92 {background-color: #FFFF19;}
.cython.score-93 {background-color: #FFFF18;}
.cython.score-94 {background-color: #FFFF18;}
.cython.score-95 {background-color: #FFFF18;}
.cython.score-96 {background-color: #FFFF18;}
.cython.score-97 {background-color: #FFFF17;}
.cython.score-98 {background-color: #FFFF17;}
.cython.score-99 {background-color: #FFFF17;}
.cython.score-100 {background-color: #FFFF17;}
.cython.score-101 {background-color: #FFFF16;}
.cython.score-102 {background-color: #FFFF16;}
.cython.score-103 {background-color: #FFFF16;}
.cython.score-104 {background-color: #FFFF16;}
.cython.score-105 {background-color: #FFFF16;}
.cython.score-106 {background-color: #FFFF15;}
.cython.score-107 {background-color: #FFFF15;}
.cython.score-108 {background-color: #FFFF15;}
.cython.score-109 {background-color: #FFFF15;}
.cython.score-110 {background-color: #FFFF15;}
.cython.score-111 {background-color: #FFFF15;}
.cython.score-112 {background-color: #FFFF14;}
.cython.score-113 {background-color: #FFFF14;}
.cython.score-114 {background-color: #FFFF14;}
.cython.score-115 {background-color: #FFFF14;}
.cython.score-116 {background-color: #FFFF14;}
.cython.score-117 {background-color: #FFFF14;}
.cython.score-118 {background-color: #FFFF13;}
.cython.score-119 {background-color: #FFFF13;}
.cython.score-120 {background-color: #FFFF13;}
.cython.score-121 {background-color: #FFFF13;}
.cython.score-122 {background-color: #FFFF13;}
.cython.score-123 {background-color: #FFFF13;}
.cython.score-124 {background-color: #FFFF13;}
.cython.score-125 {background-color: #FFFF12;}
.cython.score-126 {background-color: #FFFF12;}
.cython.score-127 {background-color: #FFFF12;}
.cython.score-128 {background-color: #FFFF12;}
.cython.score-129 {background-color: #FFFF12;}
.cython.score-130 {background-color: #FFFF12;}
.cython.score-131 {background-color: #FFFF12;}
.cython.score-132 {background-color: #FFFF11;}
.cython.score-133 {background-color: #FFFF11;}
.cython.score-134 {background-color: #FFFF11;}
.cython.score-135 {background-color: #FFFF11;}
.cython.score-136 {background-color: #FFFF11;}
.cython.score-137 {background-color: #FFFF11;}
.cython.score-138 {background-color: #FFFF11;}
.cython.score-139 {background-color: #FFFF11;}
.cython.score-140 {background-color: #FFFF11;}
.cython.score-141 {background-color: #FFFF10;}
.cython.score-142 {background-color: #FFFF10;}
.cython.score-143 {background-color: #FFFF10;}
.cython.score-144 {background-color: #FFFF10;}
.cython.score-145 {background-color: #FFFF10;}
.cython.score-146 {background-color: #FFFF10;}
.cython.score-147 {background-color: #FFFF10;}
.cython.score-148 {background-color: #FFFF10;}
.cython.score-149 {background-color: #FFFF10;}
.cython.score-150 {background-color: #FFFF0f;}
.cython.score-151 {background-color: #FFFF0f;}
.cython.score-152 {background-color: #FFFF0f;}
.cython.score-153 {background-color: #FFFF0f;}
.cython.score-154 {background-color: #FFFF0f;}
.cython.score-155 {background-color: #FFFF0f;}
.cython.score-156 {background-color: #FFFF0f;}
.cython.score-157 {background-color: #FFFF0f;}
.cython.score-158 {background-color: #FFFF0f;}
.cython.score-159 {background-color: #FFFF0f;}
.cython.score-160 {background-color: #FFFF0f;}
.cython.score-161 {background-color: #FFFF0e;}
.cython.score-162 {background-color: #FFFF0e;}
.cython.score-163 {background-color: #FFFF0e;}
.cython.score-164 {background-color: #FFFF0e;}
.cython.score-165 {background-color: #FFFF0e;}
.cython.score-166 {background-color: #FFFF0e;}
.cython.score-167 {background-color: #FFFF0e;}
.cython.score-168 {background-color: #FFFF0e;}
.cython.score-169 {background-color: #FFFF0e;}
.cython.score-170 {background-color: #FFFF0e;}
.cython.score-171 {background-color: #FFFF0e;}
.cython.score-172 {background-color: #FFFF0e;}
.cython.score-173 {background-color: #FFFF0d;}
.cython.score-174 {background-color: #FFFF0d;}
.cython.score-175 {background-color: #FFFF0d;}
.cython.score-176 {background-color: #FFFF0d;}
.cython.score-177 {background-color: #FFFF0d;}
.cython.score-178 {background-color: #FFFF0d;}
.cython.score-179 {background-color: #FFFF0d;}
.cython.score-180 {background-color: #FFFF0d;}
.cython.score-181 {background-color: #FFFF0d;}
.cython.score-182 {background-color: #FFFF0d;}
.cython.score-183 {background-color: #FFFF0d;}
.cython.score-184 {background-color: #FFFF0d;}
.cython.score-185 {background-color: #FFFF0d;}
.cython.score-186 {background-color: #FFFF0d;}
.cython.score-187 {background-color: #FFFF0c;}
.cython.score-188 {background-color: #FFFF0c;}
.cython.score-189 {background-color: #FFFF0c;}
.cython.score-190 {background-color: #FFFF0c;}
.cython.score-191 {background-color: #FFFF0c;}
.cython.score-192 {background-color: #FFFF0c;}
.cython.score-193 {background-color: #FFFF0c;}
.cython.score-194 {background-color: #FFFF0c;}
.cython.score-195 {background-color: #FFFF0c;}
.cython.score-196 {background-color: #FFFF0c;}
.cython.score-197 {background-color: #FFFF0c;}
.cython.score-198 {background-color: #FFFF0c;}
.cython.score-199 {background-color: #FFFF0c;}
.cython.score-200 {background-color: #FFFF0c;}
.cython.score-201 {background-color: #FFFF0c;}
.cython.score-202 {background-color: #FFFF0c;}
.cython.score-203 {background-color: #FFFF0b;}
.cython.score-204 {background-color: #FFFF0b;}
.cython.score-205 {background-color: #FFFF0b;}
.cython.score-206 {background-color: #FFFF0b;}
.cython.score-207 {background-color: #FFFF0b;}
.cython.score-208 {background-color: #FFFF0b;}
.cython.score-209 {background-color: #FFFF0b;}
.cython.score-210 {background-color: #FFFF0b;}
.cython.score-211 {background-color: #FFFF0b;}
.cython.score-212 {background-color: #FFFF0b;}
.cython.score-213 {background-color: #FFFF0b;}
.cython.score-214 {background-color: #FFFF0b;}
.cython.score-215 {background-color: #FFFF0b;}
.cython.score-216 {background-color: #FFFF0b;}
.cython.score-217 {background-color: #FFFF0b;}
.cython.score-218 {background-color: #FFFF0b;}
.cython.score-219 {background-color: #FFFF0b;}
.cython.score-220 {background-color: #FFFF0b;}
.cython.score-221 {background-color: #FFFF0b;}
.cython.score-222 {background-color: #FFFF0a;}
.cython.score-223 {background-color: #FFFF0a;}
.cython.score-224 {background-color: #FFFF0a;}
.cython.score-225 {background-color: #FFFF0a;}
.cython.score-226 {background-color: #FFFF0a;}
.cython.score-227 {background-color: #FFFF0a;}
.cython.score-228 {background-color: #FFFF0a;}
.cython.score-229 {background-color: #FFFF0a;}
.cython.score-230 {background-color: #FFFF0a;}
.cython.score-231 {background-color: #FFFF0a;}
.cython.score-232 {background-color: #FFFF0a;}
.cython.score-233 {background-color: #FFFF0a;}
.cython.score-234 {background-color: #FFFF0a;}
.cython.score-235 {background-color: #FFFF0a;}
.cython.score-236 {background-color: #FFFF0a;}
.cython.score-237 {background-color: #FFFF0a;}
.cython.score-238 {background-color: #FFFF0a;}
.cython.score-239 {background-color: #FFFF0a;}
.cython.score-240 {background-color: #FFFF0a;}
.cython.score-241 {background-color: #FFFF0a;}
.cython.score-242 {background-color: #FFFF0a;}
.cython.score-243 {background-color: #FFFF0a;}
.cython.score-244 {background-color: #FFFF0a;}
.cython.score-245 {background-color: #FFFF0a;}
.cython.score-246 {background-color: #FFFF09;}
.cython.score-247 {background-color: #FFFF09;}
.cython.score-248 {background-color: #FFFF09;}
.cython.score-249 {background-color: #FFFF09;}
.cython.score-250 {background-color: #FFFF09;}
.cython.score-251 {background-color: #FFFF09;}
.cython.score-252 {background-color: #FFFF09;}
.cython.score-253 {background-color: #FFFF09;}
.cython.score-254 {background-color: #FFFF09;}
.cython .hll { background-color: #ffffcc }
.cython { background: #f8f8f8; }
.cython .c { color: #408080; font-style: italic } /* Comment */
.cython .err { border: 1px solid #FF0000 } /* Error */
.cython .k { color: #008000; font-weight: bold } /* Keyword */
.cython .o { color: #666666 } /* Operator */
.cython .ch { color: #408080; font-style: italic } /* Comment.Hashbang */
.cython .cm { color: #408080; font-style: italic } /* Comment.Multiline */
.cython .cp { color: #BC7A00 } /* Comment.Preproc */
.cython .cpf { color: #408080; font-style: italic } /* Comment.PreprocFile */
.cython .c1 { color: #408080; font-style: italic } /* Comment.Single */
.cython .cs { color: #408080; font-style: italic } /* Comment.Special */
.cython .gd { color: #A00000 } /* Generic.Deleted */
.cython .ge { font-style: italic } /* Generic.Emph */
.cython .gr { color: #FF0000 } /* Generic.Error */
.cython .gh { color: #000080; font-weight: bold } /* Generic.Heading */
.cython .gi { color: #00A000 } /* Generic.Inserted */
.cython .go { color: #888888 } /* Generic.Output */
.cython .gp { color: #000080; font-weight: bold } /* Generic.Prompt */
.cython .gs { font-weight: bold } /* Generic.Strong */
.cython .gu { color: #800080; font-weight: bold } /* Generic.Subheading */
.cython .gt { color: #0044DD } /* Generic.Traceback */
.cython .kc { color: #008000; font-weight: bold } /* Keyword.Constant */
.cython .kd { color: #008000; font-weight: bold } /* Keyword.Declaration */
.cython .kn { color: #008000; font-weight: bold } /* Keyword.Namespace */
.cython .kp { color: #008000 } /* Keyword.Pseudo */
.cython .kr { color: #008000; font-weight: bold } /* Keyword.Reserved */
.cython .kt { color: #B00040 } /* Keyword.Type */
.cython .m { color: #666666 } /* Literal.Number */
.cython .s { color: #BA2121 } /* Literal.String */
.cython .na { color: #7D9029 } /* Name.Attribute */
.cython .nb { color: #008000 } /* Name.Builtin */
.cython .nc { color: #0000FF; font-weight: bold } /* Name.Class */
.cython .no { color: #880000 } /* Name.Constant */
.cython .nd { color: #AA22FF } /* Name.Decorator */
.cython .ni { color: #999999; font-weight: bold } /* Name.Entity */
.cython .ne { color: #D2413A; font-weight: bold } /* Name.Exception */
.cython .nf { color: #0000FF } /* Name.Function */
.cython .nl { color: #A0A000 } /* Name.Label */
.cython .nn { color: #0000FF; font-weight: bold } /* Name.Namespace */
.cython .nt { color: #008000; font-weight: bold } /* Name.Tag */
.cython .nv { color: #19177C } /* Name.Variable */
.cython .ow { color: #AA22FF; font-weight: bold } /* Operator.Word */
.cython .w { color: #bbbbbb } /* Text.Whitespace */
.cython .mb { color: #666666 } /* Literal.Number.Bin */
.cython .mf { color: #666666 } /* Literal.Number.Float */
.cython .mh { color: #666666 } /* Literal.Number.Hex */
.cython .mi { color: #666666 } /* Literal.Number.Integer */
.cython .mo { color: #666666 } /* Literal.Number.Oct */
.cython .sa { color: #BA2121 } /* Literal.String.Affix */
.cython .sb { color: #BA2121 } /* Literal.String.Backtick */
.cython .sc { color: #BA2121 } /* Literal.String.Char */
.cython .dl { color: #BA2121 } /* Literal.String.Delimiter */
.cython .sd { color: #BA2121; font-style: italic } /* Literal.String.Doc */
.cython .s2 { color: #BA2121 } /* Literal.String.Double */
.cython .se { color: #BB6622; font-weight: bold } /* Literal.String.Escape */
.cython .sh { color: #BA2121 } /* Literal.String.Heredoc */
.cython .si { color: #BB6688; font-weight: bold } /* Literal.String.Interpol */
.cython .sx { color: #008000 } /* Literal.String.Other */
.cython .sr { color: #BB6688 } /* Literal.String.Regex */
.cython .s1 { color: #BA2121 } /* Literal.String.Single */
.cython .ss { color: #19177C } /* Literal.String.Symbol */
.cython .bp { color: #008000 } /* Name.Builtin.Pseudo */
.cython .fm { color: #0000FF } /* Name.Function.Magic */
.cython .vc { color: #19177C } /* Name.Variable.Class */
.cython .vg { color: #19177C } /* Name.Variable.Global */
.cython .vi { color: #19177C } /* Name.Variable.Instance */
.cython .vm { color: #19177C } /* Name.Variable.Magic */
.cython .il { color: #666666 } /* Literal.Number.Integer.Long */
</style>
</head>
<body class="cython">
<p><span style="border-bottom: solid 1px grey;">Generated by Cython 0.29.17</span></p>
<p>
<span style="background-color: #FFFF00">Yellow lines</span> hint at Python interaction.<br />
Click on a line that starts with a "<code>+</code>" to see the C code that Cython generated for it.
</p>
<p>Raw output: <a href="lab_xs.c">lab_xs.c</a></p>
<div class="cython"><pre class="cython line score-0">&#xA0;<span class="">01</span>: <span class="k">from</span> <span class="nn">libc.math</span> <span class="k">cimport</span> <span class="n">tanh</span><span class="p">,</span> <span class="n">atanh</span><span class="p">,</span> <span class="n">sqrt</span></pre>
<pre class="cython line score-0">&#xA0;<span class="">02</span>: </pre>
<pre class="cython line score-108" onclick="(function(s){s.display=s.display==='block'?'none':'block'})(this.nextElementSibling.style)">+<span class="">03</span>: <span class="k">def</span> <span class="nf">diff_xs_eta</span><span class="p">(</span><span class="n">double</span> <span class="n">e_proton</span><span class="p">,</span> <span class="n">double</span> <span class="n">charge</span><span class="p">,</span> <span class="n">double</span> <span class="n">eta</span><span class="p">,</span> <span class="n">double</span> <span class="n">x_1</span><span class="p">,</span> <span class="n">double</span> <span class="n">x_2</span><span class="p">):</span></pre>
<pre class='cython code score-108 '>/* Python wrapper */
static PyObject *__pyx_pw_6lab_xs_1diff_xs_eta(PyObject *__pyx_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/
static char __pyx_doc_6lab_xs_diff_xs_eta[] = "Calculates the differential cross section as a function of the\n cosine of the pseudo rapidity eta of one photon in units of 1/GeV\302\262.\n Here d\316\251=detad\317\206\n :param e_proton: proton energy per beam [GeV]\n :param charge: charge of the quark\n :param x_1: momentum fraction of the first quark\n :param x_2: momentum fraction of the second quark\n :param eta: pseudo rapidity\n :return: the differential cross section [GeV^{-2}]\n ";
static PyMethodDef __pyx_mdef_6lab_xs_1diff_xs_eta = {"diff_xs_eta", (PyCFunction)(void*)(PyCFunctionWithKeywords)__pyx_pw_6lab_xs_1diff_xs_eta, METH_VARARGS|METH_KEYWORDS, __pyx_doc_6lab_xs_diff_xs_eta};
static PyObject *__pyx_pw_6lab_xs_1diff_xs_eta(PyObject *__pyx_self, PyObject *__pyx_args, PyObject *__pyx_kwds) {
double __pyx_v_e_proton;
double __pyx_v_charge;
double __pyx_v_eta;
double __pyx_v_x_1;
double __pyx_v_x_2;
PyObject *__pyx_r = 0;
<span class='refnanny'>__Pyx_RefNannyDeclarations</span>
<span class='refnanny'>__Pyx_RefNannySetupContext</span>("diff_xs_eta (wrapper)", 0);
{
static PyObject **__pyx_pyargnames[] = {&amp;__pyx_n_s_e_proton,&amp;__pyx_n_s_charge,&amp;__pyx_n_s_eta,&amp;__pyx_n_s_x_1,&amp;__pyx_n_s_x_2,0};
PyObject* values[5] = {0,0,0,0,0};
if (unlikely(__pyx_kwds)) {
Py_ssize_t kw_args;
const Py_ssize_t pos_args = <span class='py_macro_api'>PyTuple_GET_SIZE</span>(__pyx_args);
switch (pos_args) {
case 5: values[4] = <span class='py_macro_api'>PyTuple_GET_ITEM</span>(__pyx_args, 4);
CYTHON_FALLTHROUGH;
case 4: values[3] = <span class='py_macro_api'>PyTuple_GET_ITEM</span>(__pyx_args, 3);
CYTHON_FALLTHROUGH;
case 3: values[2] = <span class='py_macro_api'>PyTuple_GET_ITEM</span>(__pyx_args, 2);
CYTHON_FALLTHROUGH;
case 2: values[1] = <span class='py_macro_api'>PyTuple_GET_ITEM</span>(__pyx_args, 1);
CYTHON_FALLTHROUGH;
case 1: values[0] = <span class='py_macro_api'>PyTuple_GET_ITEM</span>(__pyx_args, 0);
CYTHON_FALLTHROUGH;
case 0: break;
default: goto __pyx_L5_argtuple_error;
}
kw_args = <span class='py_c_api'>PyDict_Size</span>(__pyx_kwds);
switch (pos_args) {
case 0:
if (likely((values[0] = <span class='pyx_c_api'>__Pyx_PyDict_GetItemStr</span>(__pyx_kwds, __pyx_n_s_e_proton)) != 0)) kw_args--;
else goto __pyx_L5_argtuple_error;
CYTHON_FALLTHROUGH;
case 1:
if (likely((values[1] = <span class='pyx_c_api'>__Pyx_PyDict_GetItemStr</span>(__pyx_kwds, __pyx_n_s_charge)) != 0)) kw_args--;
else {
<span class='pyx_c_api'>__Pyx_RaiseArgtupleInvalid</span>("diff_xs_eta", 1, 5, 5, 1); <span class='error_goto'>__PYX_ERR(0, 3, __pyx_L3_error)</span>
}
CYTHON_FALLTHROUGH;
case 2:
if (likely((values[2] = <span class='pyx_c_api'>__Pyx_PyDict_GetItemStr</span>(__pyx_kwds, __pyx_n_s_eta)) != 0)) kw_args--;
else {
<span class='pyx_c_api'>__Pyx_RaiseArgtupleInvalid</span>("diff_xs_eta", 1, 5, 5, 2); <span class='error_goto'>__PYX_ERR(0, 3, __pyx_L3_error)</span>
}
CYTHON_FALLTHROUGH;
case 3:
if (likely((values[3] = <span class='pyx_c_api'>__Pyx_PyDict_GetItemStr</span>(__pyx_kwds, __pyx_n_s_x_1)) != 0)) kw_args--;
else {
<span class='pyx_c_api'>__Pyx_RaiseArgtupleInvalid</span>("diff_xs_eta", 1, 5, 5, 3); <span class='error_goto'>__PYX_ERR(0, 3, __pyx_L3_error)</span>
}
CYTHON_FALLTHROUGH;
case 4:
if (likely((values[4] = <span class='pyx_c_api'>__Pyx_PyDict_GetItemStr</span>(__pyx_kwds, __pyx_n_s_x_2)) != 0)) kw_args--;
else {
<span class='pyx_c_api'>__Pyx_RaiseArgtupleInvalid</span>("diff_xs_eta", 1, 5, 5, 4); <span class='error_goto'>__PYX_ERR(0, 3, __pyx_L3_error)</span>
}
}
if (unlikely(kw_args &gt; 0)) {
if (unlikely(<span class='pyx_c_api'>__Pyx_ParseOptionalKeywords</span>(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "diff_xs_eta") &lt; 0)) <span class='error_goto'>__PYX_ERR(0, 3, __pyx_L3_error)</span>
}
} else if (<span class='py_macro_api'>PyTuple_GET_SIZE</span>(__pyx_args) != 5) {
goto __pyx_L5_argtuple_error;
} else {
values[0] = <span class='py_macro_api'>PyTuple_GET_ITEM</span>(__pyx_args, 0);
values[1] = <span class='py_macro_api'>PyTuple_GET_ITEM</span>(__pyx_args, 1);
values[2] = <span class='py_macro_api'>PyTuple_GET_ITEM</span>(__pyx_args, 2);
values[3] = <span class='py_macro_api'>PyTuple_GET_ITEM</span>(__pyx_args, 3);
values[4] = <span class='py_macro_api'>PyTuple_GET_ITEM</span>(__pyx_args, 4);
}
__pyx_v_e_proton = __pyx_<span class='py_c_api'>PyFloat_AsDouble</span>(values[0]); if (unlikely((__pyx_v_e_proton == (double)-1) &amp;&amp; <span class='py_c_api'>PyErr_Occurred</span>())) <span class='error_goto'>__PYX_ERR(0, 3, __pyx_L3_error)</span>
__pyx_v_charge = __pyx_<span class='py_c_api'>PyFloat_AsDouble</span>(values[1]); if (unlikely((__pyx_v_charge == (double)-1) &amp;&amp; <span class='py_c_api'>PyErr_Occurred</span>())) <span class='error_goto'>__PYX_ERR(0, 3, __pyx_L3_error)</span>
__pyx_v_eta = __pyx_<span class='py_c_api'>PyFloat_AsDouble</span>(values[2]); if (unlikely((__pyx_v_eta == (double)-1) &amp;&amp; <span class='py_c_api'>PyErr_Occurred</span>())) <span class='error_goto'>__PYX_ERR(0, 3, __pyx_L3_error)</span>
__pyx_v_x_1 = __pyx_<span class='py_c_api'>PyFloat_AsDouble</span>(values[3]); if (unlikely((__pyx_v_x_1 == (double)-1) &amp;&amp; <span class='py_c_api'>PyErr_Occurred</span>())) <span class='error_goto'>__PYX_ERR(0, 3, __pyx_L3_error)</span>
__pyx_v_x_2 = __pyx_<span class='py_c_api'>PyFloat_AsDouble</span>(values[4]); if (unlikely((__pyx_v_x_2 == (double)-1) &amp;&amp; <span class='py_c_api'>PyErr_Occurred</span>())) <span class='error_goto'>__PYX_ERR(0, 3, __pyx_L3_error)</span>
}
goto __pyx_L4_argument_unpacking_done;
__pyx_L5_argtuple_error:;
<span class='pyx_c_api'>__Pyx_RaiseArgtupleInvalid</span>("diff_xs_eta", 1, 5, 5, <span class='py_macro_api'>PyTuple_GET_SIZE</span>(__pyx_args)); <span class='error_goto'>__PYX_ERR(0, 3, __pyx_L3_error)</span>
__pyx_L3_error:;
<span class='pyx_c_api'>__Pyx_AddTraceback</span>("lab_xs.diff_xs_eta", __pyx_clineno, __pyx_lineno, __pyx_filename);
<span class='refnanny'>__Pyx_RefNannyFinishContext</span>();
return NULL;
__pyx_L4_argument_unpacking_done:;
__pyx_r = __pyx_pf_6lab_xs_diff_xs_eta(__pyx_self, __pyx_v_e_proton, __pyx_v_charge, __pyx_v_eta, __pyx_v_x_1, __pyx_v_x_2);
/* function exit code */
<span class='refnanny'>__Pyx_RefNannyFinishContext</span>();
return __pyx_r;
}
static PyObject *__pyx_pf_6lab_xs_diff_xs_eta(CYTHON_UNUSED PyObject *__pyx_self, double __pyx_v_e_proton, double __pyx_v_charge, double __pyx_v_eta, double __pyx_v_x_1, double __pyx_v_x_2) {
double __pyx_v_rap;
PyObject *__pyx_r = NULL;
<span class='refnanny'>__Pyx_RefNannyDeclarations</span>
<span class='refnanny'>__Pyx_RefNannySetupContext</span>("diff_xs_eta", 0);
/* … */
/* function exit code */
__pyx_L1_error:;
<span class='pyx_macro_api'>__Pyx_XDECREF</span>(__pyx_t_1);
<span class='pyx_c_api'>__Pyx_AddTraceback</span>("lab_xs.diff_xs_eta", __pyx_clineno, __pyx_lineno, __pyx_filename);
__pyx_r = NULL;
__pyx_L0:;
<span class='refnanny'>__Pyx_XGIVEREF</span>(__pyx_r);
<span class='refnanny'>__Pyx_RefNannyFinishContext</span>();
return __pyx_r;
}
/* … */
__pyx_tuple_ = <span class='py_c_api'>PyTuple_Pack</span>(6, __pyx_n_s_e_proton, __pyx_n_s_charge, __pyx_n_s_eta, __pyx_n_s_x_1, __pyx_n_s_x_2, __pyx_n_s_rap);<span class='error_goto'> if (unlikely(!__pyx_tuple_)) __PYX_ERR(0, 3, __pyx_L1_error)</span>
<span class='refnanny'>__Pyx_GOTREF</span>(__pyx_tuple_);
<span class='refnanny'>__Pyx_GIVEREF</span>(__pyx_tuple_);
/* … */
__pyx_t_1 = PyCFunction_NewEx(&amp;__pyx_mdef_6lab_xs_1diff_xs_eta, NULL, __pyx_n_s_lab_xs);<span class='error_goto'> if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 3, __pyx_L1_error)</span>
<span class='refnanny'>__Pyx_GOTREF</span>(__pyx_t_1);
if (<span class='py_c_api'>PyDict_SetItem</span>(__pyx_d, __pyx_n_s_diff_xs_eta, __pyx_t_1) &lt; 0) <span class='error_goto'>__PYX_ERR(0, 3, __pyx_L1_error)</span>
<span class='pyx_macro_api'>__Pyx_DECREF</span>(__pyx_t_1); __pyx_t_1 = 0;
__pyx_codeobj__2 = (PyObject*)<span class='pyx_c_api'>__Pyx_PyCode_New</span>(5, 0, 6, 0, CO_OPTIMIZED|CO_NEWLOCALS, __pyx_empty_bytes, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_tuple_, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_kp_s_lab_xs_pyx, __pyx_n_s_diff_xs_eta, 3, __pyx_empty_bytes);<span class='error_goto'> if (unlikely(!__pyx_codeobj__2)) __PYX_ERR(0, 3, __pyx_L1_error)</span>
</pre><pre class="cython line score-0">&#xA0;<span class="">04</span>: <span class="sd">&quot;&quot;&quot;Calculates the differential cross section as a function of the</span></pre>
<pre class="cython line score-0">&#xA0;<span class="">05</span>: <span class="sd"> cosine of the pseudo rapidity eta of one photon in units of 1/GeV².</span></pre>
<pre class="cython line score-0">&#xA0;<span class="">06</span>: <span class="sd"> Here dΩ=detadφ</span></pre>
<pre class="cython line score-0">&#xA0;<span class="">07</span>: <span class="sd"> :param e_proton: proton energy per beam [GeV]</span></pre>
<pre class="cython line score-0">&#xA0;<span class="">08</span>: <span class="sd"> :param charge: charge of the quark</span></pre>
<pre class="cython line score-0">&#xA0;<span class="">09</span>: <span class="sd"> :param x_1: momentum fraction of the first quark</span></pre>
<pre class="cython line score-0">&#xA0;<span class="">10</span>: <span class="sd"> :param x_2: momentum fraction of the second quark</span></pre>
<pre class="cython line score-0">&#xA0;<span class="">11</span>: <span class="sd"> :param eta: pseudo rapidity</span></pre>
<pre class="cython line score-0">&#xA0;<span class="">12</span>: <span class="sd"> :return: the differential cross section [GeV^{-2}]</span></pre>
<pre class="cython line score-0">&#xA0;<span class="">13</span>: <span class="sd"> &quot;&quot;&quot;</span></pre>
<pre class="cython line score-0" onclick="(function(s){s.display=s.display==='block'?'none':'block'})(this.nextElementSibling.style)">+<span class="">14</span>: <span class="k">cdef</span> <span class="kt">double</span> <span class="nf">rap</span> <span class="o">=</span> <span class="n">atanh</span><span class="p">((</span><span class="n">x_1</span> <span class="o">-</span> <span class="n">x_2</span><span class="p">)</span> <span class="o">/</span> <span class="p">(</span><span class="n">x_1</span> <span class="o">+</span> <span class="n">x_2</span><span class="p">))</span></pre>
<pre class='cython code score-0 '> __pyx_v_rap = atanh(((__pyx_v_x_1 - __pyx_v_x_2) / (__pyx_v_x_1 + __pyx_v_x_2)));
</pre><pre class="cython line score-1" onclick="(function(s){s.display=s.display==='block'?'none':'block'})(this.nextElementSibling.style)">+<span class="">15</span>: <span class="k">return</span> <span class="p">(</span></pre>
<pre class='cython code score-1 '> <span class='pyx_macro_api'>__Pyx_XDECREF</span>(__pyx_r);
</pre><pre class="cython line score-0">&#xA0;<span class="">16</span>: <span class="n">charge</span> <span class="o">**</span> <span class="mf">4</span></pre>
<pre class="cython line score-0">&#xA0;<span class="">17</span>: <span class="o">/</span> <span class="p">(</span><span class="mf">137.036</span> <span class="o">*</span> <span class="n">e_proton</span><span class="p">)</span> <span class="o">**</span> <span class="mf">2</span></pre>
<pre class="cython line score-0">&#xA0;<span class="">18</span>: <span class="o">/</span> <span class="p">(</span><span class="mf">24</span> <span class="o">*</span> <span class="n">x_1</span> <span class="o">*</span> <span class="n">x_2</span><span class="p">)</span></pre>
<pre class="cython line score-5" onclick="(function(s){s.display=s.display==='block'?'none':'block'})(this.nextElementSibling.style)">+<span class="">19</span>: <span class="o">*</span> <span class="p">((</span><span class="n">tanh</span><span class="p">(</span><span class="n">eta</span> <span class="o">-</span> <span class="n">rap</span><span class="p">))</span> <span class="o">**</span> <span class="mf">2</span> <span class="o">+</span> <span class="mf">1</span><span class="p">)</span></pre>
<pre class='cython code score-5 '> __pyx_t_1 = <span class='py_c_api'>PyFloat_FromDouble</span>((((pow(__pyx_v_charge, 4.0) / pow((137.036 * __pyx_v_e_proton), 2.0)) / ((24.0 * __pyx_v_x_1) * __pyx_v_x_2)) * (pow(tanh((__pyx_v_eta - __pyx_v_rap)), 2.0) + 1.0)));<span class='error_goto'> if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 19, __pyx_L1_error)</span>
<span class='refnanny'>__Pyx_GOTREF</span>(__pyx_t_1);
__pyx_r = __pyx_t_1;
__pyx_t_1 = 0;
goto __pyx_L0;
</pre><pre class="cython line score-0">&#xA0;<span class="">20</span>: <span class="p">)</span></pre>
<pre class="cython line score-0">&#xA0;<span class="">21</span>: </pre>
<pre class="cython line score-92" onclick="(function(s){s.display=s.display==='block'?'none':'block'})(this.nextElementSibling.style)">+<span class="">22</span>: <span class="k">def</span> <span class="nf">pT</span><span class="p">(</span><span class="n">double</span> <span class="n">e_proton</span><span class="p">,</span> <span class="n">double</span> <span class="n">eta</span><span class="p">,</span> <span class="n">double</span> <span class="n">x_1</span><span class="p">,</span> <span class="n">double</span> <span class="n">x_2</span><span class="p">):</span></pre>
<pre class='cython code score-92 '>/* Python wrapper */
static PyObject *__pyx_pw_6lab_xs_3pT(PyObject *__pyx_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/
static PyMethodDef __pyx_mdef_6lab_xs_3pT = {"pT", (PyCFunction)(void*)(PyCFunctionWithKeywords)__pyx_pw_6lab_xs_3pT, METH_VARARGS|METH_KEYWORDS, 0};
static PyObject *__pyx_pw_6lab_xs_3pT(PyObject *__pyx_self, PyObject *__pyx_args, PyObject *__pyx_kwds) {
double __pyx_v_e_proton;
double __pyx_v_eta;
double __pyx_v_x_1;
double __pyx_v_x_2;
PyObject *__pyx_r = 0;
<span class='refnanny'>__Pyx_RefNannyDeclarations</span>
<span class='refnanny'>__Pyx_RefNannySetupContext</span>("pT (wrapper)", 0);
{
static PyObject **__pyx_pyargnames[] = {&amp;__pyx_n_s_e_proton,&amp;__pyx_n_s_eta,&amp;__pyx_n_s_x_1,&amp;__pyx_n_s_x_2,0};
PyObject* values[4] = {0,0,0,0};
if (unlikely(__pyx_kwds)) {
Py_ssize_t kw_args;
const Py_ssize_t pos_args = <span class='py_macro_api'>PyTuple_GET_SIZE</span>(__pyx_args);
switch (pos_args) {
case 4: values[3] = <span class='py_macro_api'>PyTuple_GET_ITEM</span>(__pyx_args, 3);
CYTHON_FALLTHROUGH;
case 3: values[2] = <span class='py_macro_api'>PyTuple_GET_ITEM</span>(__pyx_args, 2);
CYTHON_FALLTHROUGH;
case 2: values[1] = <span class='py_macro_api'>PyTuple_GET_ITEM</span>(__pyx_args, 1);
CYTHON_FALLTHROUGH;
case 1: values[0] = <span class='py_macro_api'>PyTuple_GET_ITEM</span>(__pyx_args, 0);
CYTHON_FALLTHROUGH;
case 0: break;
default: goto __pyx_L5_argtuple_error;
}
kw_args = <span class='py_c_api'>PyDict_Size</span>(__pyx_kwds);
switch (pos_args) {
case 0:
if (likely((values[0] = <span class='pyx_c_api'>__Pyx_PyDict_GetItemStr</span>(__pyx_kwds, __pyx_n_s_e_proton)) != 0)) kw_args--;
else goto __pyx_L5_argtuple_error;
CYTHON_FALLTHROUGH;
case 1:
if (likely((values[1] = <span class='pyx_c_api'>__Pyx_PyDict_GetItemStr</span>(__pyx_kwds, __pyx_n_s_eta)) != 0)) kw_args--;
else {
<span class='pyx_c_api'>__Pyx_RaiseArgtupleInvalid</span>("pT", 1, 4, 4, 1); <span class='error_goto'>__PYX_ERR(0, 22, __pyx_L3_error)</span>
}
CYTHON_FALLTHROUGH;
case 2:
if (likely((values[2] = <span class='pyx_c_api'>__Pyx_PyDict_GetItemStr</span>(__pyx_kwds, __pyx_n_s_x_1)) != 0)) kw_args--;
else {
<span class='pyx_c_api'>__Pyx_RaiseArgtupleInvalid</span>("pT", 1, 4, 4, 2); <span class='error_goto'>__PYX_ERR(0, 22, __pyx_L3_error)</span>
}
CYTHON_FALLTHROUGH;
case 3:
if (likely((values[3] = <span class='pyx_c_api'>__Pyx_PyDict_GetItemStr</span>(__pyx_kwds, __pyx_n_s_x_2)) != 0)) kw_args--;
else {
<span class='pyx_c_api'>__Pyx_RaiseArgtupleInvalid</span>("pT", 1, 4, 4, 3); <span class='error_goto'>__PYX_ERR(0, 22, __pyx_L3_error)</span>
}
}
if (unlikely(kw_args &gt; 0)) {
if (unlikely(<span class='pyx_c_api'>__Pyx_ParseOptionalKeywords</span>(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "pT") &lt; 0)) <span class='error_goto'>__PYX_ERR(0, 22, __pyx_L3_error)</span>
}
} else if (<span class='py_macro_api'>PyTuple_GET_SIZE</span>(__pyx_args) != 4) {
goto __pyx_L5_argtuple_error;
} else {
values[0] = <span class='py_macro_api'>PyTuple_GET_ITEM</span>(__pyx_args, 0);
values[1] = <span class='py_macro_api'>PyTuple_GET_ITEM</span>(__pyx_args, 1);
values[2] = <span class='py_macro_api'>PyTuple_GET_ITEM</span>(__pyx_args, 2);
values[3] = <span class='py_macro_api'>PyTuple_GET_ITEM</span>(__pyx_args, 3);
}
__pyx_v_e_proton = __pyx_<span class='py_c_api'>PyFloat_AsDouble</span>(values[0]); if (unlikely((__pyx_v_e_proton == (double)-1) &amp;&amp; <span class='py_c_api'>PyErr_Occurred</span>())) <span class='error_goto'>__PYX_ERR(0, 22, __pyx_L3_error)</span>
__pyx_v_eta = __pyx_<span class='py_c_api'>PyFloat_AsDouble</span>(values[1]); if (unlikely((__pyx_v_eta == (double)-1) &amp;&amp; <span class='py_c_api'>PyErr_Occurred</span>())) <span class='error_goto'>__PYX_ERR(0, 22, __pyx_L3_error)</span>
__pyx_v_x_1 = __pyx_<span class='py_c_api'>PyFloat_AsDouble</span>(values[2]); if (unlikely((__pyx_v_x_1 == (double)-1) &amp;&amp; <span class='py_c_api'>PyErr_Occurred</span>())) <span class='error_goto'>__PYX_ERR(0, 22, __pyx_L3_error)</span>
__pyx_v_x_2 = __pyx_<span class='py_c_api'>PyFloat_AsDouble</span>(values[3]); if (unlikely((__pyx_v_x_2 == (double)-1) &amp;&amp; <span class='py_c_api'>PyErr_Occurred</span>())) <span class='error_goto'>__PYX_ERR(0, 22, __pyx_L3_error)</span>
}
goto __pyx_L4_argument_unpacking_done;
__pyx_L5_argtuple_error:;
<span class='pyx_c_api'>__Pyx_RaiseArgtupleInvalid</span>("pT", 1, 4, 4, <span class='py_macro_api'>PyTuple_GET_SIZE</span>(__pyx_args)); <span class='error_goto'>__PYX_ERR(0, 22, __pyx_L3_error)</span>
__pyx_L3_error:;
<span class='pyx_c_api'>__Pyx_AddTraceback</span>("lab_xs.pT", __pyx_clineno, __pyx_lineno, __pyx_filename);
<span class='refnanny'>__Pyx_RefNannyFinishContext</span>();
return NULL;
__pyx_L4_argument_unpacking_done:;
__pyx_r = __pyx_pf_6lab_xs_2pT(__pyx_self, __pyx_v_e_proton, __pyx_v_eta, __pyx_v_x_1, __pyx_v_x_2);
/* function exit code */
<span class='refnanny'>__Pyx_RefNannyFinishContext</span>();
return __pyx_r;
}
static PyObject *__pyx_pf_6lab_xs_2pT(CYTHON_UNUSED PyObject *__pyx_self, double __pyx_v_e_proton, double __pyx_v_eta, double __pyx_v_x_1, double __pyx_v_x_2) {
double __pyx_v_tanh_eta;
PyObject *__pyx_r = NULL;
<span class='refnanny'>__Pyx_RefNannyDeclarations</span>
<span class='refnanny'>__Pyx_RefNannySetupContext</span>("pT", 0);
/* … */
/* function exit code */
__pyx_L1_error:;
<span class='pyx_macro_api'>__Pyx_XDECREF</span>(__pyx_t_1);
<span class='pyx_c_api'>__Pyx_AddTraceback</span>("lab_xs.pT", __pyx_clineno, __pyx_lineno, __pyx_filename);
__pyx_r = NULL;
__pyx_L0:;
<span class='refnanny'>__Pyx_XGIVEREF</span>(__pyx_r);
<span class='refnanny'>__Pyx_RefNannyFinishContext</span>();
return __pyx_r;
}
/* … */
__pyx_tuple__3 = <span class='py_c_api'>PyTuple_Pack</span>(5, __pyx_n_s_e_proton, __pyx_n_s_eta, __pyx_n_s_x_1, __pyx_n_s_x_2, __pyx_n_s_tanh_eta);<span class='error_goto'> if (unlikely(!__pyx_tuple__3)) __PYX_ERR(0, 22, __pyx_L1_error)</span>
<span class='refnanny'>__Pyx_GOTREF</span>(__pyx_tuple__3);
<span class='refnanny'>__Pyx_GIVEREF</span>(__pyx_tuple__3);
/* … */
__pyx_t_1 = PyCFunction_NewEx(&amp;__pyx_mdef_6lab_xs_3pT, NULL, __pyx_n_s_lab_xs);<span class='error_goto'> if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 22, __pyx_L1_error)</span>
<span class='refnanny'>__Pyx_GOTREF</span>(__pyx_t_1);
if (<span class='py_c_api'>PyDict_SetItem</span>(__pyx_d, __pyx_n_s_pT, __pyx_t_1) &lt; 0) <span class='error_goto'>__PYX_ERR(0, 22, __pyx_L1_error)</span>
<span class='pyx_macro_api'>__Pyx_DECREF</span>(__pyx_t_1); __pyx_t_1 = 0;
__pyx_codeobj__4 = (PyObject*)<span class='pyx_c_api'>__Pyx_PyCode_New</span>(4, 0, 5, 0, CO_OPTIMIZED|CO_NEWLOCALS, __pyx_empty_bytes, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_tuple__3, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_kp_s_lab_xs_pyx, __pyx_n_s_pT, 22, __pyx_empty_bytes);<span class='error_goto'> if (unlikely(!__pyx_codeobj__4)) __PYX_ERR(0, 22, __pyx_L1_error)</span>
</pre><pre class="cython line score-0" onclick="(function(s){s.display=s.display==='block'?'none':'block'})(this.nextElementSibling.style)">+<span class="">23</span>: <span class="k">cdef</span> <span class="kt">double</span> <span class="nf">tanh_eta</span> <span class="o">=</span> <span class="n">tanh</span><span class="p">(</span><span class="n">eta</span><span class="p">)</span></pre>
<pre class='cython code score-0 '> __pyx_v_tanh_eta = tanh(__pyx_v_eta);
</pre><pre class="cython line score-1" onclick="(function(s){s.display=s.display==='block'?'none':'block'})(this.nextElementSibling.style)">+<span class="">24</span>: <span class="k">return</span> <span class="p">(</span></pre>
<pre class='cython code score-1 '> <span class='pyx_macro_api'>__Pyx_XDECREF</span>(__pyx_r);
</pre><pre class="cython line score-0">&#xA0;<span class="">25</span>: <span class="mf">2</span></pre>
<pre class="cython line score-0">&#xA0;<span class="">26</span>: <span class="o">*</span> <span class="n">e_proton</span></pre>
<pre class="cython line score-0">&#xA0;<span class="">27</span>: <span class="o">*</span> <span class="n">x_1</span></pre>
<pre class="cython line score-0">&#xA0;<span class="">28</span>: <span class="o">*</span> <span class="n">x_2</span></pre>
<pre class="cython line score-0">&#xA0;<span class="">29</span>: <span class="o">/</span> <span class="p">(</span><span class="n">x_1</span> <span class="o">+</span> <span class="n">x_2</span> <span class="o">-</span> <span class="p">(</span><span class="n">x_1</span> <span class="o">-</span> <span class="n">x_2</span><span class="p">)</span> <span class="o">*</span> <span class="n">tanh_eta</span><span class="p">)</span></pre>
<pre class="cython line score-5" onclick="(function(s){s.display=s.display==='block'?'none':'block'})(this.nextElementSibling.style)">+<span class="">30</span>: <span class="o">*</span> <span class="n">sqrt</span><span class="p">(</span><span class="mf">1</span> <span class="o">-</span> <span class="n">tanh_eta</span> <span class="o">**</span> <span class="mf">2</span><span class="p">)</span></pre>
<pre class='cython code score-5 '> __pyx_t_1 = <span class='py_c_api'>PyFloat_FromDouble</span>((((((2.0 * __pyx_v_e_proton) * __pyx_v_x_1) * __pyx_v_x_2) / ((__pyx_v_x_1 + __pyx_v_x_2) - ((__pyx_v_x_1 - __pyx_v_x_2) * __pyx_v_tanh_eta))) * sqrt((1.0 - pow(__pyx_v_tanh_eta, 2.0)))));<span class='error_goto'> if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 30, __pyx_L1_error)</span>
<span class='refnanny'>__Pyx_GOTREF</span>(__pyx_t_1);
__pyx_r = __pyx_t_1;
__pyx_t_1 = 0;
goto __pyx_L0;
</pre><pre class="cython line score-0">&#xA0;<span class="">31</span>: <span class="p">)</span></pre>
<pre class="cython line score-0">&#xA0;<span class="">32</span>: </pre>
<pre class="cython line score-0">&#xA0;<span class="">33</span>: </pre>
<pre class="cython line score-76" onclick="(function(s){s.display=s.display==='block'?'none':'block'})(this.nextElementSibling.style)">+<span class="">34</span>: <span class="k">def</span> <span class="nf">averaged_tchanel_q2</span><span class="p">(</span><span class="n">double</span> <span class="n">e_proton</span><span class="p">,</span> <span class="n">double</span> <span class="n">x_1</span><span class="p">,</span> <span class="n">double</span> <span class="n">x_2</span><span class="p">):</span></pre>
<pre class='cython code score-76 '>/* Python wrapper */
static PyObject *__pyx_pw_6lab_xs_5averaged_tchanel_q2(PyObject *__pyx_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/
static PyMethodDef __pyx_mdef_6lab_xs_5averaged_tchanel_q2 = {"averaged_tchanel_q2", (PyCFunction)(void*)(PyCFunctionWithKeywords)__pyx_pw_6lab_xs_5averaged_tchanel_q2, METH_VARARGS|METH_KEYWORDS, 0};
static PyObject *__pyx_pw_6lab_xs_5averaged_tchanel_q2(PyObject *__pyx_self, PyObject *__pyx_args, PyObject *__pyx_kwds) {
double __pyx_v_e_proton;
double __pyx_v_x_1;
double __pyx_v_x_2;
PyObject *__pyx_r = 0;
<span class='refnanny'>__Pyx_RefNannyDeclarations</span>
<span class='refnanny'>__Pyx_RefNannySetupContext</span>("averaged_tchanel_q2 (wrapper)", 0);
{
static PyObject **__pyx_pyargnames[] = {&amp;__pyx_n_s_e_proton,&amp;__pyx_n_s_x_1,&amp;__pyx_n_s_x_2,0};
PyObject* values[3] = {0,0,0};
if (unlikely(__pyx_kwds)) {
Py_ssize_t kw_args;
const Py_ssize_t pos_args = <span class='py_macro_api'>PyTuple_GET_SIZE</span>(__pyx_args);
switch (pos_args) {
case 3: values[2] = <span class='py_macro_api'>PyTuple_GET_ITEM</span>(__pyx_args, 2);
CYTHON_FALLTHROUGH;
case 2: values[1] = <span class='py_macro_api'>PyTuple_GET_ITEM</span>(__pyx_args, 1);
CYTHON_FALLTHROUGH;
case 1: values[0] = <span class='py_macro_api'>PyTuple_GET_ITEM</span>(__pyx_args, 0);
CYTHON_FALLTHROUGH;
case 0: break;
default: goto __pyx_L5_argtuple_error;
}
kw_args = <span class='py_c_api'>PyDict_Size</span>(__pyx_kwds);
switch (pos_args) {
case 0:
if (likely((values[0] = <span class='pyx_c_api'>__Pyx_PyDict_GetItemStr</span>(__pyx_kwds, __pyx_n_s_e_proton)) != 0)) kw_args--;
else goto __pyx_L5_argtuple_error;
CYTHON_FALLTHROUGH;
case 1:
if (likely((values[1] = <span class='pyx_c_api'>__Pyx_PyDict_GetItemStr</span>(__pyx_kwds, __pyx_n_s_x_1)) != 0)) kw_args--;
else {
<span class='pyx_c_api'>__Pyx_RaiseArgtupleInvalid</span>("averaged_tchanel_q2", 1, 3, 3, 1); <span class='error_goto'>__PYX_ERR(0, 34, __pyx_L3_error)</span>
}
CYTHON_FALLTHROUGH;
case 2:
if (likely((values[2] = <span class='pyx_c_api'>__Pyx_PyDict_GetItemStr</span>(__pyx_kwds, __pyx_n_s_x_2)) != 0)) kw_args--;
else {
<span class='pyx_c_api'>__Pyx_RaiseArgtupleInvalid</span>("averaged_tchanel_q2", 1, 3, 3, 2); <span class='error_goto'>__PYX_ERR(0, 34, __pyx_L3_error)</span>
}
}
if (unlikely(kw_args &gt; 0)) {
if (unlikely(<span class='pyx_c_api'>__Pyx_ParseOptionalKeywords</span>(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "averaged_tchanel_q2") &lt; 0)) <span class='error_goto'>__PYX_ERR(0, 34, __pyx_L3_error)</span>
}
} else if (<span class='py_macro_api'>PyTuple_GET_SIZE</span>(__pyx_args) != 3) {
goto __pyx_L5_argtuple_error;
} else {
values[0] = <span class='py_macro_api'>PyTuple_GET_ITEM</span>(__pyx_args, 0);
values[1] = <span class='py_macro_api'>PyTuple_GET_ITEM</span>(__pyx_args, 1);
values[2] = <span class='py_macro_api'>PyTuple_GET_ITEM</span>(__pyx_args, 2);
}
__pyx_v_e_proton = __pyx_<span class='py_c_api'>PyFloat_AsDouble</span>(values[0]); if (unlikely((__pyx_v_e_proton == (double)-1) &amp;&amp; <span class='py_c_api'>PyErr_Occurred</span>())) <span class='error_goto'>__PYX_ERR(0, 34, __pyx_L3_error)</span>
__pyx_v_x_1 = __pyx_<span class='py_c_api'>PyFloat_AsDouble</span>(values[1]); if (unlikely((__pyx_v_x_1 == (double)-1) &amp;&amp; <span class='py_c_api'>PyErr_Occurred</span>())) <span class='error_goto'>__PYX_ERR(0, 34, __pyx_L3_error)</span>
__pyx_v_x_2 = __pyx_<span class='py_c_api'>PyFloat_AsDouble</span>(values[2]); if (unlikely((__pyx_v_x_2 == (double)-1) &amp;&amp; <span class='py_c_api'>PyErr_Occurred</span>())) <span class='error_goto'>__PYX_ERR(0, 34, __pyx_L3_error)</span>
}
goto __pyx_L4_argument_unpacking_done;
__pyx_L5_argtuple_error:;
<span class='pyx_c_api'>__Pyx_RaiseArgtupleInvalid</span>("averaged_tchanel_q2", 1, 3, 3, <span class='py_macro_api'>PyTuple_GET_SIZE</span>(__pyx_args)); <span class='error_goto'>__PYX_ERR(0, 34, __pyx_L3_error)</span>
__pyx_L3_error:;
<span class='pyx_c_api'>__Pyx_AddTraceback</span>("lab_xs.averaged_tchanel_q2", __pyx_clineno, __pyx_lineno, __pyx_filename);
<span class='refnanny'>__Pyx_RefNannyFinishContext</span>();
return NULL;
__pyx_L4_argument_unpacking_done:;
__pyx_r = __pyx_pf_6lab_xs_4averaged_tchanel_q2(__pyx_self, __pyx_v_e_proton, __pyx_v_x_1, __pyx_v_x_2);
/* function exit code */
<span class='refnanny'>__Pyx_RefNannyFinishContext</span>();
return __pyx_r;
}
static PyObject *__pyx_pf_6lab_xs_4averaged_tchanel_q2(CYTHON_UNUSED PyObject *__pyx_self, double __pyx_v_e_proton, double __pyx_v_x_1, double __pyx_v_x_2) {
PyObject *__pyx_r = NULL;
<span class='refnanny'>__Pyx_RefNannyDeclarations</span>
<span class='refnanny'>__Pyx_RefNannySetupContext</span>("averaged_tchanel_q2", 0);
/* … */
/* function exit code */
__pyx_L1_error:;
<span class='pyx_macro_api'>__Pyx_XDECREF</span>(__pyx_t_1);
<span class='pyx_c_api'>__Pyx_AddTraceback</span>("lab_xs.averaged_tchanel_q2", __pyx_clineno, __pyx_lineno, __pyx_filename);
__pyx_r = NULL;
__pyx_L0:;
<span class='refnanny'>__Pyx_XGIVEREF</span>(__pyx_r);
<span class='refnanny'>__Pyx_RefNannyFinishContext</span>();
return __pyx_r;
}
/* … */
__pyx_tuple__5 = <span class='py_c_api'>PyTuple_Pack</span>(3, __pyx_n_s_e_proton, __pyx_n_s_x_1, __pyx_n_s_x_2);<span class='error_goto'> if (unlikely(!__pyx_tuple__5)) __PYX_ERR(0, 34, __pyx_L1_error)</span>
<span class='refnanny'>__Pyx_GOTREF</span>(__pyx_tuple__5);
<span class='refnanny'>__Pyx_GIVEREF</span>(__pyx_tuple__5);
/* … */
__pyx_t_1 = PyCFunction_NewEx(&amp;__pyx_mdef_6lab_xs_5averaged_tchanel_q2, NULL, __pyx_n_s_lab_xs);<span class='error_goto'> if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 34, __pyx_L1_error)</span>
<span class='refnanny'>__Pyx_GOTREF</span>(__pyx_t_1);
if (<span class='py_c_api'>PyDict_SetItem</span>(__pyx_d, __pyx_n_s_averaged_tchanel_q2, __pyx_t_1) &lt; 0) <span class='error_goto'>__PYX_ERR(0, 34, __pyx_L1_error)</span>
<span class='pyx_macro_api'>__Pyx_DECREF</span>(__pyx_t_1); __pyx_t_1 = 0;
__pyx_codeobj__6 = (PyObject*)<span class='pyx_c_api'>__Pyx_PyCode_New</span>(3, 0, 3, 0, CO_OPTIMIZED|CO_NEWLOCALS, __pyx_empty_bytes, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_tuple__5, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_kp_s_lab_xs_pyx, __pyx_n_s_averaged_tchanel_q2, 34, __pyx_empty_bytes);<span class='error_goto'> if (unlikely(!__pyx_codeobj__6)) __PYX_ERR(0, 34, __pyx_L1_error)</span>
</pre><pre class="cython line score-6" onclick="(function(s){s.display=s.display==='block'?'none':'block'})(this.nextElementSibling.style)">+<span class="">35</span>: <span class="k">return</span> <span class="mf">2</span> <span class="o">*</span> <span class="n">x_1</span> <span class="o">*</span> <span class="n">x_2</span> <span class="o">*</span> <span class="n">e_proton</span> <span class="o">**</span> <span class="mf">2</span></pre>
<pre class='cython code score-6 '> <span class='pyx_macro_api'>__Pyx_XDECREF</span>(__pyx_r);
__pyx_t_1 = <span class='py_c_api'>PyFloat_FromDouble</span>((((2.0 * __pyx_v_x_1) * __pyx_v_x_2) * pow(__pyx_v_e_proton, 2.0)));<span class='error_goto'> if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 35, __pyx_L1_error)</span>
<span class='refnanny'>__Pyx_GOTREF</span>(__pyx_t_1);
__pyx_r = __pyx_t_1;
__pyx_t_1 = 0;
goto __pyx_L0;
</pre><pre class="cython line score-0">&#xA0;<span class="">36</span>: </pre>
<pre class="cython line score-74" onclick="(function(s){s.display=s.display==='block'?'none':'block'})(this.nextElementSibling.style)">+<span class="">37</span>: <span class="k">def</span> <span class="nf">second_eta</span><span class="p">(</span><span class="n">double</span> <span class="n">eta</span><span class="p">,</span> <span class="n">double</span> <span class="n">x_1</span><span class="p">,</span> <span class="n">double</span> <span class="n">x_2</span><span class="p">):</span></pre>
<pre class='cython code score-74 '>/* Python wrapper */
static PyObject *__pyx_pw_6lab_xs_7second_eta(PyObject *__pyx_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/
static PyMethodDef __pyx_mdef_6lab_xs_7second_eta = {"second_eta", (PyCFunction)(void*)(PyCFunctionWithKeywords)__pyx_pw_6lab_xs_7second_eta, METH_VARARGS|METH_KEYWORDS, 0};
static PyObject *__pyx_pw_6lab_xs_7second_eta(PyObject *__pyx_self, PyObject *__pyx_args, PyObject *__pyx_kwds) {
double __pyx_v_eta;
double __pyx_v_x_1;
double __pyx_v_x_2;
PyObject *__pyx_r = 0;
<span class='refnanny'>__Pyx_RefNannyDeclarations</span>
<span class='refnanny'>__Pyx_RefNannySetupContext</span>("second_eta (wrapper)", 0);
{
static PyObject **__pyx_pyargnames[] = {&amp;__pyx_n_s_eta,&amp;__pyx_n_s_x_1,&amp;__pyx_n_s_x_2,0};
PyObject* values[3] = {0,0,0};
if (unlikely(__pyx_kwds)) {
Py_ssize_t kw_args;
const Py_ssize_t pos_args = <span class='py_macro_api'>PyTuple_GET_SIZE</span>(__pyx_args);
switch (pos_args) {
case 3: values[2] = <span class='py_macro_api'>PyTuple_GET_ITEM</span>(__pyx_args, 2);
CYTHON_FALLTHROUGH;
case 2: values[1] = <span class='py_macro_api'>PyTuple_GET_ITEM</span>(__pyx_args, 1);
CYTHON_FALLTHROUGH;
case 1: values[0] = <span class='py_macro_api'>PyTuple_GET_ITEM</span>(__pyx_args, 0);
CYTHON_FALLTHROUGH;
case 0: break;
default: goto __pyx_L5_argtuple_error;
}
kw_args = <span class='py_c_api'>PyDict_Size</span>(__pyx_kwds);
switch (pos_args) {
case 0:
if (likely((values[0] = <span class='pyx_c_api'>__Pyx_PyDict_GetItemStr</span>(__pyx_kwds, __pyx_n_s_eta)) != 0)) kw_args--;
else goto __pyx_L5_argtuple_error;
CYTHON_FALLTHROUGH;
case 1:
if (likely((values[1] = <span class='pyx_c_api'>__Pyx_PyDict_GetItemStr</span>(__pyx_kwds, __pyx_n_s_x_1)) != 0)) kw_args--;
else {
<span class='pyx_c_api'>__Pyx_RaiseArgtupleInvalid</span>("second_eta", 1, 3, 3, 1); <span class='error_goto'>__PYX_ERR(0, 37, __pyx_L3_error)</span>
}
CYTHON_FALLTHROUGH;
case 2:
if (likely((values[2] = <span class='pyx_c_api'>__Pyx_PyDict_GetItemStr</span>(__pyx_kwds, __pyx_n_s_x_2)) != 0)) kw_args--;
else {
<span class='pyx_c_api'>__Pyx_RaiseArgtupleInvalid</span>("second_eta", 1, 3, 3, 2); <span class='error_goto'>__PYX_ERR(0, 37, __pyx_L3_error)</span>
}
}
if (unlikely(kw_args &gt; 0)) {
if (unlikely(<span class='pyx_c_api'>__Pyx_ParseOptionalKeywords</span>(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "second_eta") &lt; 0)) <span class='error_goto'>__PYX_ERR(0, 37, __pyx_L3_error)</span>
}
} else if (<span class='py_macro_api'>PyTuple_GET_SIZE</span>(__pyx_args) != 3) {
goto __pyx_L5_argtuple_error;
} else {
values[0] = <span class='py_macro_api'>PyTuple_GET_ITEM</span>(__pyx_args, 0);
values[1] = <span class='py_macro_api'>PyTuple_GET_ITEM</span>(__pyx_args, 1);
values[2] = <span class='py_macro_api'>PyTuple_GET_ITEM</span>(__pyx_args, 2);
}
__pyx_v_eta = __pyx_<span class='py_c_api'>PyFloat_AsDouble</span>(values[0]); if (unlikely((__pyx_v_eta == (double)-1) &amp;&amp; <span class='py_c_api'>PyErr_Occurred</span>())) <span class='error_goto'>__PYX_ERR(0, 37, __pyx_L3_error)</span>
__pyx_v_x_1 = __pyx_<span class='py_c_api'>PyFloat_AsDouble</span>(values[1]); if (unlikely((__pyx_v_x_1 == (double)-1) &amp;&amp; <span class='py_c_api'>PyErr_Occurred</span>())) <span class='error_goto'>__PYX_ERR(0, 37, __pyx_L3_error)</span>
__pyx_v_x_2 = __pyx_<span class='py_c_api'>PyFloat_AsDouble</span>(values[2]); if (unlikely((__pyx_v_x_2 == (double)-1) &amp;&amp; <span class='py_c_api'>PyErr_Occurred</span>())) <span class='error_goto'>__PYX_ERR(0, 37, __pyx_L3_error)</span>
}
goto __pyx_L4_argument_unpacking_done;
__pyx_L5_argtuple_error:;
<span class='pyx_c_api'>__Pyx_RaiseArgtupleInvalid</span>("second_eta", 1, 3, 3, <span class='py_macro_api'>PyTuple_GET_SIZE</span>(__pyx_args)); <span class='error_goto'>__PYX_ERR(0, 37, __pyx_L3_error)</span>
__pyx_L3_error:;
<span class='pyx_c_api'>__Pyx_AddTraceback</span>("lab_xs.second_eta", __pyx_clineno, __pyx_lineno, __pyx_filename);
<span class='refnanny'>__Pyx_RefNannyFinishContext</span>();
return NULL;
__pyx_L4_argument_unpacking_done:;
__pyx_r = __pyx_pf_6lab_xs_6second_eta(__pyx_self, __pyx_v_eta, __pyx_v_x_1, __pyx_v_x_2);
/* function exit code */
<span class='refnanny'>__Pyx_RefNannyFinishContext</span>();
return __pyx_r;
}
static PyObject *__pyx_pf_6lab_xs_6second_eta(CYTHON_UNUSED PyObject *__pyx_self, double __pyx_v_eta, double __pyx_v_x_1, double __pyx_v_x_2) {
double __pyx_v_rap;
PyObject *__pyx_r = NULL;
<span class='refnanny'>__Pyx_RefNannyDeclarations</span>
<span class='refnanny'>__Pyx_RefNannySetupContext</span>("second_eta", 0);
/* … */
/* function exit code */
__pyx_L1_error:;
<span class='pyx_macro_api'>__Pyx_XDECREF</span>(__pyx_t_1);
<span class='pyx_c_api'>__Pyx_AddTraceback</span>("lab_xs.second_eta", __pyx_clineno, __pyx_lineno, __pyx_filename);
__pyx_r = NULL;
__pyx_L0:;
<span class='refnanny'>__Pyx_XGIVEREF</span>(__pyx_r);
<span class='refnanny'>__Pyx_RefNannyFinishContext</span>();
return __pyx_r;
}
/* … */
__pyx_tuple__7 = <span class='py_c_api'>PyTuple_Pack</span>(4, __pyx_n_s_eta, __pyx_n_s_x_1, __pyx_n_s_x_2, __pyx_n_s_rap);<span class='error_goto'> if (unlikely(!__pyx_tuple__7)) __PYX_ERR(0, 37, __pyx_L1_error)</span>
<span class='refnanny'>__Pyx_GOTREF</span>(__pyx_tuple__7);
<span class='refnanny'>__Pyx_GIVEREF</span>(__pyx_tuple__7);
/* … */
__pyx_t_1 = PyCFunction_NewEx(&amp;__pyx_mdef_6lab_xs_7second_eta, NULL, __pyx_n_s_lab_xs);<span class='error_goto'> if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 37, __pyx_L1_error)</span>
<span class='refnanny'>__Pyx_GOTREF</span>(__pyx_t_1);
if (<span class='py_c_api'>PyDict_SetItem</span>(__pyx_d, __pyx_n_s_second_eta, __pyx_t_1) &lt; 0) <span class='error_goto'>__PYX_ERR(0, 37, __pyx_L1_error)</span>
<span class='pyx_macro_api'>__Pyx_DECREF</span>(__pyx_t_1); __pyx_t_1 = 0;
</pre><pre class="cython line score-0" onclick="(function(s){s.display=s.display==='block'?'none':'block'})(this.nextElementSibling.style)">+<span class="">38</span>: <span class="k">cdef</span> <span class="kt">double</span> <span class="nf">rap</span> <span class="o">=</span> <span class="n">atanh</span><span class="p">((</span><span class="n">x_1</span> <span class="o">-</span> <span class="n">x_2</span><span class="p">)</span> <span class="o">/</span> <span class="p">(</span><span class="n">x_1</span> <span class="o">+</span> <span class="n">x_2</span><span class="p">))</span></pre>
<pre class='cython code score-0 '> __pyx_v_rap = atanh(((__pyx_v_x_1 - __pyx_v_x_2) / (__pyx_v_x_1 + __pyx_v_x_2)));
</pre><pre class="cython line score-6" onclick="(function(s){s.display=s.display==='block'?'none':'block'})(this.nextElementSibling.style)">+<span class="">39</span>: <span class="k">return</span> <span class="p">(</span><span class="o">-</span><span class="n">eta</span> <span class="o">+</span> <span class="mf">2</span> <span class="o">*</span> <span class="n">rap</span><span class="p">)</span></pre>
<pre class='cython code score-6 '> <span class='pyx_macro_api'>__Pyx_XDECREF</span>(__pyx_r);
__pyx_t_1 = <span class='py_c_api'>PyFloat_FromDouble</span>(((-__pyx_v_eta) + (2.0 * __pyx_v_rap)));<span class='error_goto'> if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 39, __pyx_L1_error)</span>
<span class='refnanny'>__Pyx_GOTREF</span>(__pyx_t_1);
__pyx_r = __pyx_t_1;
__pyx_t_1 = 0;
goto __pyx_L0;
</pre></div></body></html>

View file

@ -741,7 +741,7 @@ def sample_unweighted_array(
@utility.numpy_cache("cache")
def integrate_vegas_nd(
f,
interval,
intervals,
seed=None,
num_increments=5,
epsilon=1e-3,
@ -779,12 +779,12 @@ def integrate_vegas_nd(
:rtype: tuple
"""
intervals = np.asarray(_process_interval(interval))
ndim = len(interval)
intervals = np.asarray(_process_interval(intervals))
ndim = len(intervals)
integration_volume = (intervals[:, 1] - intervals[:, 0]).prod()
if not isinstance(num_increments, collections.Iterable):
num_increments = np.ones(ndim) * num_increments
num_increments = np.ones(ndim).astype(int) * num_increments
else:
num_increments = np.asarray(num_increments)
@ -841,9 +841,16 @@ def integrate_vegas_nd(
while True:
vegas_iterations += 1
new_increment_borders = []
remainder = 0
for dim in range(ndim):
increment_weights = generate_integral_steps(increment_borders.copy(), dim)
nonzero_increments = increment_weights[increment_weights > 0]
remainder += (nonzero_increments.max() - nonzero_increments.min()) * len(
nonzero_increments
)
new_borders = reshuffle_increments_nd(
increment_weights,
num_increments[dim],
@ -853,18 +860,7 @@ def integrate_vegas_nd(
)
new_increment_borders.append(new_borders)
remainder = np.array(
[
np.abs(
(borders[1:-1] - old_borders[1:-1]) / (borders[0] - borders[-1])
).max()
for borders, old_borders in zip(
new_increment_borders, increment_borders
)
]
).max()
print(remainder)
remainder /= ndim
increment_borders = new_increment_borders
if abs(remainder) < increment_epsilon:
break

View file

@ -0,0 +1,31 @@
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from matplotlib import cm
from monte_carlo import *
def plot_cubes(f, increments):
fig = plt.figure()
ax = fig.add_subplot(111, projection="3d")
cubes = generate_cubes(increments)
for cube in cubes:
x_range, y_range = cube
xs, ys = np.mgrid[
x_range[0] : x_range[1] : 0.01, y_range[0] : y_range[1] : 0.01,
]
vol = get_integration_volume(cube)
fun = f(xs, ys)
ax.plot_surface(xs, ys, fun * vol * len(cubes), cmap=cm.coolwarm, linewidth=0)
ax.plot_surface(xs, ys, fun, cmap=cm.coolwarm, linewidth=0)
# ax.plot_surface(xs, ys, np.ones_like(fun) / vol, cmap=cm.coolwarm, linewidth=0)
return fig, ax
def test_f(f, *args, **kwargs):
res = integrate_vegas_nd(f, *args, **kwargs)
fig, ax = plot_cubes(f, res.increment_borders)
plt.show()
return res