mirror of
https://github.com/vale981/bachelor_thesis
synced 2025-03-05 09:31:42 -05:00
add sampling
This commit is contained in:
parent
48248d980a
commit
91d5a431e4
1 changed files with 228 additions and 23 deletions
251
talk/slides.tex
251
talk/slides.tex
|
@ -13,7 +13,8 @@ labelformat=brace, position=top]{subcaption}
|
||||||
% \setbeameroption{show notes on second screen} %
|
% \setbeameroption{show notes on second screen} %
|
||||||
\addbibresource{thesis.bib}
|
\addbibresource{thesis.bib}
|
||||||
\graphicspath{ {figs/} }
|
\graphicspath{ {figs/} }
|
||||||
|
\usepackage{animate}
|
||||||
|
\newfontfamily\DejaSans{DejaVu Sans}
|
||||||
\usetheme{Antibes}
|
\usetheme{Antibes}
|
||||||
% \usepackage{eulerpx}
|
% \usepackage{eulerpx}
|
||||||
\usepackage{ifdraft}
|
\usepackage{ifdraft}
|
||||||
|
@ -30,6 +31,9 @@ labelformat=brace, position=top]{subcaption}
|
||||||
|
|
||||||
\setbeamertemplate{footline}[frame number]
|
\setbeamertemplate{footline}[frame number]
|
||||||
\setbeamertemplate{note page}[plain]
|
\setbeamertemplate{note page}[plain]
|
||||||
|
\setbeamertemplate{bibliography item}{\insertbiblabel} %% Remove book
|
||||||
|
%% symbol from references and add
|
||||||
|
%% number
|
||||||
|
|
||||||
\sisetup{separate-uncertainty = true}
|
\sisetup{separate-uncertainty = true}
|
||||||
% Macros
|
% Macros
|
||||||
|
@ -125,8 +129,7 @@ labelformat=brace, position=top]{subcaption}
|
||||||
\hypersetup{pageanchor=false}
|
\hypersetup{pageanchor=false}
|
||||||
\maketitle
|
\maketitle
|
||||||
|
|
||||||
\hypersetup{pageanchor=true}
|
\hypersetup{pageanchor=true} \pagenumbering{arabic}
|
||||||
\pagenumbering{arabic}
|
|
||||||
|
|
||||||
\begin{frame}
|
\begin{frame}
|
||||||
\tableofcontents
|
\tableofcontents
|
||||||
|
@ -206,8 +209,7 @@ labelformat=brace, position=top]{subcaption}
|
||||||
\end{column}
|
\end{column}
|
||||||
\pause
|
\pause
|
||||||
\begin{column}{.5\textwidth}
|
\begin{column}{.5\textwidth}
|
||||||
\begin{block}{Task: calculate
|
\begin{block}{Task: calculate \(\abs{\mathcal{M}}^2\)}
|
||||||
\(\abs{\mathcal{M}}^2\)}
|
|
||||||
\begin{enumerate}[<+->]
|
\begin{enumerate}[<+->]
|
||||||
\item translate diagrams to matrix elements
|
\item translate diagrams to matrix elements
|
||||||
\item use Casimir's trick to average over spins
|
\item use Casimir's trick to average over spins
|
||||||
|
@ -217,8 +219,7 @@ labelformat=brace, position=top]{subcaption}
|
||||||
\item simplify with trigonometric identities
|
\item simplify with trigonometric identities
|
||||||
\end{enumerate}
|
\end{enumerate}
|
||||||
\end{block}
|
\end{block}
|
||||||
\pause Here: Quark masses
|
\pause Here: Quark masses neglected.
|
||||||
neglected.
|
|
||||||
\end{column}
|
\end{column}
|
||||||
\end{columns}
|
\end{columns}
|
||||||
\end{frame}
|
\end{frame}
|
||||||
|
@ -256,10 +257,11 @@ labelformat=brace, position=top]{subcaption}
|
||||||
\end{figure}
|
\end{figure}
|
||||||
\end{frame}
|
\end{frame}
|
||||||
|
|
||||||
\begin{frame}{Comparison with \sherpa}
|
\begin{frame}{Comparison with \sherpa~\cite{Bothmann:2019yzt}}
|
||||||
\begin{itemize}
|
\begin{itemize}
|
||||||
\item<1-> choose \result{xs/python/eta} and \result{xs/python/ecm} and
|
|
||||||
integrate XS
|
\item<1-> choose \result{xs/python/eta} and \result{xs/python/ecm}
|
||||||
|
and integrate XS
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
\label{eq:total-crossec}
|
\label{eq:total-crossec}
|
||||||
\sigma = {\frac{\pi\alpha^2Z^4}{3\ecm^2}}\cdot\qty[\tanh(\eta_2) - \tanh(\eta_1) + 2(\eta_1
|
\sigma = {\frac{\pi\alpha^2Z^4}{3\ecm^2}}\cdot\qty[\tanh(\eta_2) - \tanh(\eta_1) + 2(\eta_1
|
||||||
|
@ -274,9 +276,8 @@ labelformat=brace, position=top]{subcaption}
|
||||||
\plot[scale=.5]{xs/total_xs}
|
\plot[scale=.5]{xs/total_xs}
|
||||||
\end{minipage}
|
\end{minipage}
|
||||||
\begin{minipage}[c]{0.3\textwidth}
|
\begin{minipage}[c]{0.3\textwidth}
|
||||||
\caption{\label{fig:totxs} The cross section
|
\caption{\label{fig:totxs} The cross section of the process for
|
||||||
of the process for a pseudo-rapidity
|
a pseudo-rapidity integrated over \([-\eta, \eta]\).}
|
||||||
integrated over \([-\eta, \eta]\).}
|
|
||||||
\end{minipage}
|
\end{minipage}
|
||||||
\end{figure}
|
\end{figure}
|
||||||
\end{frame}
|
\end{frame}
|
||||||
|
@ -284,13 +285,13 @@ labelformat=brace, position=top]{subcaption}
|
||||||
\section{Monte Carlo Methods}
|
\section{Monte Carlo Methods}
|
||||||
|
|
||||||
\note[itemize]{
|
\note[itemize]{
|
||||||
\item Gradually bring in knowledge through distribution.
|
\item Gradually bring in knowledge through distribution. }
|
||||||
}
|
|
||||||
\begin{frame}
|
\begin{frame}
|
||||||
\begin{block}{Basic Ideas}
|
\begin{block}{Basic Ideas}
|
||||||
\begin{itemize}
|
\begin{itemize}
|
||||||
\item<+-> Given some unknown function
|
\item<+-> Given some unknown function
|
||||||
\(f\colon \vb{x}\in\Omega\subset\mathbb{R}^n\mapsto\mathbb{R}\) \ldots
|
\(f\colon \vb{x}\in\Omega\subset\mathbb{R}^n\mapsto\mathbb{R}\)
|
||||||
|
\ldots
|
||||||
\item<+-> \ldots\ how do we answer questions about \(f\)?
|
\item<+-> \ldots\ how do we answer questions about \(f\)?
|
||||||
\end{itemize}
|
\end{itemize}
|
||||||
\;\;\onslide<+->{\(\implies\) Sample it at random points.}
|
\;\;\onslide<+->{\(\implies\) Sample it at random points.}
|
||||||
|
@ -308,8 +309,7 @@ labelformat=brace, position=top]{subcaption}
|
||||||
\note[itemize]{
|
\note[itemize]{
|
||||||
\item omitting details (law of big numbers, central limit theorem)
|
\item omitting details (law of big numbers, central limit theorem)
|
||||||
\item at least three angles of attack
|
\item at least three angles of attack
|
||||||
\item some sort of importance sampling, volume: stratified sampling
|
\item some sort of importance sampling, volume: stratified sampling }
|
||||||
}
|
|
||||||
\begin{frame}
|
\begin{frame}
|
||||||
\begin{itemize}
|
\begin{itemize}
|
||||||
\item<+-> we have:
|
\item<+-> we have:
|
||||||
|
@ -334,9 +334,9 @@ labelformat=brace, position=top]{subcaption}
|
||||||
\begin{align}
|
\begin{align}
|
||||||
\sigma_I^2 &= \frac{\textcolor<+->{red}{\sigma^2}}{\textcolor<.->{blue}{N}} \\
|
\sigma_I^2 &= \frac{\textcolor<+->{red}{\sigma^2}}{\textcolor<.->{blue}{N}} \\
|
||||||
\sigma^2 &= \VAR{\frac{F}{\Rho}} = \int_{\textcolor<+(3)->{blue}{\Omega}} \qty[I -
|
\sigma^2 &= \VAR{\frac{F}{\Rho}} = \int_{\textcolor<+(3)->{blue}{\Omega}} \qty[I -
|
||||||
\frac{f(\vb{x})}{\textcolor<+->{blue}{\rho(\vb{x})}}]^2
|
\frac{f(\vb{x})}{\textcolor<+->{blue}{\rho(\vb{x})}}]^2
|
||||||
\textcolor<.->{blue}{\rho(\vb{x})} \textcolor<+->{blue}{\dd{\vb{x}}} \approx \frac{1}{N - 1}\sum_i \qty[I -
|
\textcolor<.->{blue}{\rho(\vb{x})} \textcolor<+->{blue}{\dd{\vb{x}}} \approx \frac{1}{N - 1}\sum_i \qty[I -
|
||||||
\frac{f(\vb{x_i})}{\rho(\vb{x_i})}]^2 \label{eq:varI-approx}
|
\frac{f(\vb{x_i})}{\rho(\vb{x_i})}]^2 \label{eq:varI-approx}
|
||||||
\end{align}
|
\end{align}
|
||||||
\end{itemize}
|
\end{itemize}
|
||||||
\end{frame}
|
\end{frame}
|
||||||
|
@ -369,7 +369,12 @@ labelformat=brace, position=top]{subcaption}
|
||||||
\end{figure}
|
\end{figure}
|
||||||
\end{frame}
|
\end{frame}
|
||||||
|
|
||||||
\begin{frame}{Vegas}
|
\note[itemize]{
|
||||||
|
\item proposed by G. Peter Lepage (slac) 1976
|
||||||
|
\item own implementation!!!
|
||||||
|
}
|
||||||
|
\begin{frame}{\vegas\ Algorithm \cite{Lepage:19781an}}
|
||||||
|
|
||||||
\begin{columns}
|
\begin{columns}
|
||||||
\begin{column}{.5\textwidth}
|
\begin{column}{.5\textwidth}
|
||||||
\begin{block}{Idea}
|
\begin{block}{Idea}
|
||||||
|
@ -379,10 +384,14 @@ labelformat=brace, position=top]{subcaption}
|
||||||
as step function
|
as step function
|
||||||
\item iteratively approximate optimal \(\rho = f(\vb{x})/I\)
|
\item iteratively approximate optimal \(\rho = f(\vb{x})/I\)
|
||||||
with step function
|
with step function
|
||||||
|
\item this is quite efficient when \(n\geq 4\)
|
||||||
\end{enumerate}
|
\end{enumerate}
|
||||||
\end{block}
|
\end{block}
|
||||||
|
\pause
|
||||||
\begin{block}{Result}
|
\begin{block}{Result}
|
||||||
Total function evaluations: \result{xs/python/xs_mc_θ_vegas_N}
|
Total function evaluations:
|
||||||
|
\result{xs/python/xs_mc_θ_vegas_N}\\
|
||||||
|
(for same accuracy as before)
|
||||||
\end{block}
|
\end{block}
|
||||||
\end{column}
|
\end{column}
|
||||||
\begin{column}{.5\textwidth}
|
\begin{column}{.5\textwidth}
|
||||||
|
@ -394,4 +403,200 @@ labelformat=brace, position=top]{subcaption}
|
||||||
\end{column}
|
\end{column}
|
||||||
\end{columns}
|
\end{columns}
|
||||||
\end{frame}
|
\end{frame}
|
||||||
|
|
||||||
|
\subsection{Sampling}
|
||||||
|
|
||||||
|
\note[itemize]{
|
||||||
|
\item prop. to density
|
||||||
|
\item generalization to n dim is easy
|
||||||
|
\item idea -> cumulative propability the same
|
||||||
|
}
|
||||||
|
\begin{frame}
|
||||||
|
\begin{itemize}[<+->]
|
||||||
|
\item we have: \(f\colon x\in\Omega\mapsto\mathbb{R}_{>0}\)
|
||||||
|
(choose \(\Omega = [0, 1]\)) and uniformly random samples \(\{x_i\}\)
|
||||||
|
\item we seek: a sample \(\{y_i\}\) distributed according to \(f\)
|
||||||
|
\end{itemize}
|
||||||
|
\begin{block}<+->{Basic Idea}
|
||||||
|
\begin{itemize}[<+->]
|
||||||
|
\item<.-> let \(x\) be sample of uniform distribution, solve
|
||||||
|
\[\int_{0}^{y}f(x')\dd{x'} = x\cdot\int_0^1f(x')\dd{x'} =
|
||||||
|
x\cdot A\] for y to obtain sample of \(f/A\)
|
||||||
|
\item let \(F\) be the antiderivative of \(f\), then
|
||||||
|
\(y=F^{-1}(x\cdot A + F(0))\)
|
||||||
|
\begin{itemize}
|
||||||
|
\item sometimes analytical form available
|
||||||
|
\item otherwise tackle that numerically
|
||||||
|
\end{itemize}
|
||||||
|
\end{itemize}
|
||||||
|
\end{block}
|
||||||
|
\end{frame}
|
||||||
|
|
||||||
|
\begin{frame}{Hit or Miss}
|
||||||
|
\centering
|
||||||
|
\animategraphics[loop,scale=.4,autoplay,palindrome]{5}{pi/pi-}{0}{9}
|
||||||
|
\end{frame}
|
||||||
|
|
||||||
|
\begin{frame}{Hit or Miss}
|
||||||
|
\begin{block}{Basic Idea}
|
||||||
|
\begin{itemize}[<+->]
|
||||||
|
\item take samples \({x_i}\) distributed according to \(g/B\),
|
||||||
|
where \(B=\int_0^1g(x)\dd{x}\) and
|
||||||
|
\(\forall x\in\Omega\colon g(x)\geq f(x)\)
|
||||||
|
\item accept each sample with the probability~\(f(x_i)/g(x_i)\)
|
||||||
|
(importance sampling)
|
||||||
|
\item total probability of accepting a sample: \(\mathfrak{e} =
|
||||||
|
A/B < 1\) (efficiency)
|
||||||
|
\item simplest choice \(g=\max_{x\in\Omega}f(x)=f_{\text{max}}\)
|
||||||
|
\item again: efficiency gain through reduction of variance
|
||||||
|
\end{itemize}
|
||||||
|
\end{block}
|
||||||
|
|
||||||
|
\begin{block}<+->{Results with \(g=f_{\text{max}}\) }
|
||||||
|
\begin{itemize}[<+->]
|
||||||
|
\item<.-> sampling \(\dv{\sigma}{\cos\theta}\):
|
||||||
|
\result{xs/python/naive_th_samp}
|
||||||
|
\item sampling \(\dv{\sigma}{\cos\theta}\):
|
||||||
|
\result{xs/python/eta_eff}
|
||||||
|
\end{itemize}
|
||||||
|
\end{block}
|
||||||
|
\end{frame}
|
||||||
|
|
||||||
|
\begin{frame}{Hit or Miss}
|
||||||
|
\begin{columns}
|
||||||
|
\begin{column}{.4\textwidth}
|
||||||
|
\begin{block}<+->{Results with \(g=a\cdot x^2 + b\)} Modest
|
||||||
|
efficiency gain: \result{xs/python/tuned_th_samp}
|
||||||
|
\end{block}
|
||||||
|
\begin{itemize}
|
||||||
|
\item<+-> Of course, we can use \vegas\ to provide a better \(g\).
|
||||||
|
\end{itemize}
|
||||||
|
\end{column}
|
||||||
|
\begin{column}{.6\textwidth}
|
||||||
|
\begin{figure}[ht]
|
||||||
|
\centering \plot[scale=.8]{xs_sampling/upper_bound}
|
||||||
|
\caption{The distribution \(\dv{\sigma}{\cos\theta}\) and an
|
||||||
|
upper bound of the form \(a + b\cdot x^2\).}
|
||||||
|
\end{figure}
|
||||||
|
\end{column}
|
||||||
|
\end{columns}
|
||||||
|
\end{frame}
|
||||||
|
|
||||||
|
\begin{frame}{Stratified Sampling}
|
||||||
|
\begin{block}{Basic Idea}
|
||||||
|
\begin{itemize}
|
||||||
|
\item subdivide sampling volume \(\Omega\) into \(K\) subvolumes
|
||||||
|
\(\Omega_i\)
|
||||||
|
\item let \(A_i = \int_{\Omega_i}f(x)\dd{x}\)
|
||||||
|
\item take \(N_i=A_i \cdot N\) samples in each subvolume
|
||||||
|
\item efficiency is given by:
|
||||||
|
\(\mathfrak{e} = \frac{\sum_i A_i}{\sum_i A_i/\mathfrak{e}_i}\)
|
||||||
|
\end{itemize}
|
||||||
|
\(\implies\) can optimize in each subvolume independently
|
||||||
|
\end{block}
|
||||||
|
How do choose the \(\Omega_i\)? \pause {\huge\vegas! :-)}
|
||||||
|
\end{frame}
|
||||||
|
|
||||||
|
\note[itemize]{
|
||||||
|
\item no need to know the jacobian ;)
|
||||||
|
}
|
||||||
|
\begin{frame}{Observables}
|
||||||
|
\begin{itemize}
|
||||||
|
\item we want: distributions of other observables
|
||||||
|
\item turns out: simpliy piping samples \(\{x_i\}\) through a map
|
||||||
|
\(\gamma\colon\Omega\mapsto\mathbb{R}\) is enough
|
||||||
|
\end{itemize}
|
||||||
|
\begin{figure}[p]
|
||||||
|
\centering
|
||||||
|
|
||||||
|
\begin{subfigure}[b]{.49\textwidth}
|
||||||
|
\centering \plot[scale=.5]{xs_sampling/histo_sherpa_eta}
|
||||||
|
\caption{histogram of the pseudo-rapidity
|
||||||
|
(\(\eta\)).}
|
||||||
|
\end{subfigure}
|
||||||
|
\begin{subfigure}[b]{.49\textwidth}
|
||||||
|
\centering \plot[scale=.5]{xs_sampling/histo_sherpa_pt}
|
||||||
|
\caption{histogram of the transverse momentum
|
||||||
|
(\(\pt\))}
|
||||||
|
\end{subfigure}
|
||||||
|
\end{figure}
|
||||||
|
\end{frame}
|
||||||
|
|
||||||
|
\begin{frame}[allowframebreaks]
|
||||||
|
\frametitle{References}
|
||||||
|
\printbibliography
|
||||||
|
\end{frame}
|
||||||
|
|
||||||
|
\appendix
|
||||||
|
\section{Appendix}
|
||||||
|
|
||||||
|
\subsection{More on \vegas}
|
||||||
|
|
||||||
|
\begin{frame}{\vegas Details}
|
||||||
|
\begin{columns}
|
||||||
|
\begin{column}{.6\textwidth}
|
||||||
|
\begin{block}{Algorithm 1D}
|
||||||
|
\begin{enumerate}
|
||||||
|
\item start with \(N\) evenly spaced increments
|
||||||
|
\(\{[x_i, x_{i+1}]\}_{i\in\overline{1,N}}\)
|
||||||
|
\item calculate the integral weights
|
||||||
|
\(w_i = \abs{\int_{x_i}^{x_{i+1}}f(x)\dd{x}}\) and define
|
||||||
|
\(W=\sum_iw_i\)
|
||||||
|
\begin{itemize}
|
||||||
|
\item this is done with ordinary MC integration
|
||||||
|
\end{itemize}
|
||||||
|
\item calculate subdivide the \(i\)-th increment into
|
||||||
|
\(K\frac{w_i}{W}\) increments (round up), where
|
||||||
|
\(K = \mathcal{O}(1000)\)
|
||||||
|
\item amalgamate the new increments into \(N\) groups \(=\)
|
||||||
|
new increments
|
||||||
|
\end{enumerate}
|
||||||
|
\end{block}
|
||||||
|
\end{column}
|
||||||
|
\pause
|
||||||
|
\begin{column}{.4\textwidth}
|
||||||
|
\begin{block}{Advantages}
|
||||||
|
\begin{itemize}
|
||||||
|
\item number of \(f\) evaluations independent of number of
|
||||||
|
hypercubes
|
||||||
|
\item adaption itself is adaptive
|
||||||
|
\item \textcolor{red}{the advantages only show if \(n\)
|
||||||
|
``high''.}
|
||||||
|
\end{itemize}
|
||||||
|
\end{block}
|
||||||
|
\end{column}
|
||||||
|
\end{columns}
|
||||||
|
\end{frame}
|
||||||
|
|
||||||
|
\begin{frame}
|
||||||
|
\begin{figure}[ht]
|
||||||
|
\centering \plot[scale=.9]{xs/xs_integrand_vegas}
|
||||||
|
\caption{\(2\pi\dv{\sigma}{\theta}\) scaled to increments found by
|
||||||
|
\vegas}
|
||||||
|
\end{figure}
|
||||||
|
\end{frame}
|
||||||
|
\begin{frame}{\vegas\ + Hit or Miss}
|
||||||
|
\begin{figure}[ht]
|
||||||
|
\centering
|
||||||
|
\begin{subfigure}{.49\textwidth}
|
||||||
|
\centering
|
||||||
|
\plot[scale=.8]{xs_sampling/vegas_strat_dist}
|
||||||
|
\caption[The distribution for \(\cos\theta\), derived from the
|
||||||
|
differential cross-section and the \vegas-weighted
|
||||||
|
distribution]{\label{fig:vegasdist} The distribution for
|
||||||
|
\(\cos\theta\) and the \vegas-weighted
|
||||||
|
distribution.}
|
||||||
|
\end{subfigure}
|
||||||
|
\begin{subfigure}{.49\textwidth}
|
||||||
|
\centering
|
||||||
|
\plot[scale=.8]{xs_sampling/vegas_rho}
|
||||||
|
\caption[The weighting distribution generated by
|
||||||
|
\vegas.]{\label{fig:vegasrho} The weighting distribution generated
|
||||||
|
by \vegas. It is clear, that it closely follows the original
|
||||||
|
distribution.}
|
||||||
|
\end{subfigure}
|
||||||
|
\caption{\label{fig:vegas-weighting} \vegas-weighted distribution
|
||||||
|
and weighting distribution.}
|
||||||
|
\end{figure}
|
||||||
|
\end{frame}
|
||||||
\end{document}
|
\end{document}
|
||||||
|
|
Loading…
Add table
Reference in a new issue