franks improvements

This commit is contained in:
hiro98 2020-07-01 16:30:19 +02:00
parent f128324d6c
commit 170693167c

View file

@ -16,7 +16,6 @@ labelformat=brace, position=top]{subcaption}
\usepackage{ifdraft}
\usepackage{appendixnumberbeamer}
\usetikzlibrary{arrows,shapes,angles,quotes,arrows.meta,external}
\tikzexternalize[prefix=tikz/]
\graphicspath{ {figs/} }
\addbibresource{thesis.bib}
@ -171,12 +170,13 @@ labelformat=brace, position=top]{subcaption}
\begin{block}{Diphoton Process \(\qqgg\)}
\begin{itemize}
\item simple QED process, calculable by hand
\item higgs decay channel: \(H\rightarrow \gamma\gamma\)
\item background for important higgs decay channel:
\(H\rightarrow \gamma\gamma\)
\begin{itemize}
\item instrumental in its
discovery~\cite{Aad:2012tfa,Chatrchyan:2012ufa}
\end{itemize}
\item dihiggs decay \(HH\rightarrow b\bar{b}\gamma\gamma\)
\item partial background for dihiggs decay \(HH\rightarrow b\bar{b}\gamma\gamma\)
\begin{itemize}
\item process of recent interest~\cite{aaboud2018:sf}
\end{itemize}
@ -306,8 +306,8 @@ labelformat=brace, position=top]{subcaption}
\pause
\begin{block}{Concrete Applicationss}
\begin{enumerate}
\item<+-> integrate \(f\) over some volume \(\Omega\)
\item<+-> treat \(f\) as distribution and take random samples
\item integrate \(f\) over some volume \(\Omega\)
\item treat \(f\) as distribution and take random samples
\end{enumerate}
\end{block}
\end{frame}
@ -345,13 +345,13 @@ labelformat=brace, position=top]{subcaption}
\item<+-> integration error:
\begin{align}
\sigma_I^2 &= \frac{\textcolor<+->{blue}{\sigma^2}}{\textcolor<.->{red}{N}} \\
\sigma^2 &= \VAR{\frac{F}{\Rho}} = \int_{\textcolor<+(3)->{blue}{\Omega}} \qty[I -
\frac{f(\vb{x})}{\textcolor<+->{blue}{\rho(\vb{x})}}]^2
\sigma^2 &= \VAR{\frac{F}{\Rho}} = \int_{\textcolor<+(2)->{blue}{\Omega}} \qty[I -
\frac{f(\vb{x})}{\textcolor<.->{blue}{\rho(\vb{x})}}]^2
\textcolor<.->{blue}{\rho(\vb{x})} \textcolor<+->{blue}{\dd{\vb{x}}} \approx \frac{1}{N - 1}\sum_i \qty[I -
\frac{f(\vb{x_i})}{\rho(\vb{x_i})}]^2 \label{eq:varI-approx}
\end{align}
\pause
\item<+-> No mention of dimensionality :)
\item<+-> independent of dimensionality :)
\end{itemize}
\end{frame}
@ -365,7 +365,7 @@ labelformat=brace, position=top]{subcaption}
\begin{results}
\begin{itemize}
\item<3-> integrating \(\dv{\sigma}{\theta}\) with target error of
\(\sigma = \SI{1e-3}{\pico\barn}\) takes
\(\SI{1e-3}{\pico\barn}\) takes
\result{xs/python/xs_mc_N} samples
\item<4-> integrating \(\dv{\sigma}{\eta}\) takes just
\result{xs/python/xs_mc_eta_N} samples
@ -402,11 +402,12 @@ labelformat=brace, position=top]{subcaption}
\end{enumerate}
\end{block}
\pause
\begin{results}
\begin{results}[Results: Application to \(\dd{\sigma}/\dd{\theta}\)]
\begin{itemize}
\item Total function evaluations:
\item total function evaluations:
\result{xs/python/xs_mc_θ_vegas_N}\\
(for same accuracy as before)
\item without \vegas\: \result{xs/python/xs_mc_N}
\end{itemize}
\end{results}
\end{column}
@ -424,7 +425,7 @@ labelformat=brace, position=top]{subcaption}
\begin{frame}{Why Samples?}
\begin{itemize}[<+->]
\item same format as experimental data: direct comparison
\item same format as experimental data: direct comparison possible
\item easy to generate distributions for other observables
\item events can be ``dressed'' with additional effects
\end{itemize}
@ -451,13 +452,13 @@ labelformat=brace, position=top]{subcaption}
\item let \(F\) be the antiderivative of \(f\), then
\(y=F^{-1}(x\cdot A + F(0))\)
\begin{itemize}
\item sometimes analytical form available
\item otherwise tackle that numerically
\item<.-> sometimes analytical form available
\item<.-> otherwise tackle that numerically
\end{itemize}
\end{itemize}
\end{block}
\end{column}
\begin{column}{.5\textwidth}<.(-3)->
\begin{column}{.5\textwidth}<.(-1)->
\begin{figure}
\centering
\includegraphics[width=\columnwidth]{figs/normal_cdf.pdf}
@ -469,7 +470,7 @@ labelformat=brace, position=top]{subcaption}
\begin{frame}{Hit or Miss}
\begin{block}{Basic Idea}
\begin{itemize}[<+->]
\begin{itemize}
\item take samples \({x_i}\) distributed according to \(g/B\),
where \(B=\int_0^1g(x)\dd{x}\) and
\(\forall x\in\Omega\colon g(x)\geq f(x)\)
@ -481,9 +482,9 @@ labelformat=brace, position=top]{subcaption}
\item again: efficiency gain through reduction of variance
\end{itemize}
\end{block}
\begin{results}<+->[Results with \(g=f_{\text{max}}\)]
\begin{itemize}[<+->]
\pause
\begin{results}[Results with \(g=f_{\text{max}}\)]
\begin{itemize}
\item<.-> sampling \(\dv{\sigma}{\cos\theta}\):
\result{xs/python/naive_th_samp}
\item sampling \(\dv{\sigma}{\eta}\):
@ -505,7 +506,7 @@ labelformat=brace, position=top]{subcaption}
problems, not discussing now.}
\begin{itemize}
\item<+-> this approach leads to problems when \(f\) is not
smooth or \emph{very} small some regions
smooth or \emph{very} small over larger regions
\end{itemize}
\end{itemize}
\end{results}
@ -555,8 +556,8 @@ labelformat=brace, position=top]{subcaption}
}
\begin{itemize}
\item we want: distributions of other observables \pause
\item turns out: simply piping samples \(\{x_i\}\) through a map
\(\gamma\colon\Omega\mapsto\mathbb{R}\) is enough
\item turns out: reconstructing full event (kinematics, ...) from
sampling variables + calculating other observables from that is enough
\end{itemize}
\pause
\begin{figure}[p]
@ -592,7 +593,9 @@ labelformat=brace, position=top]{subcaption}
\sigma_{ij} = \int f_i\qty(x_1;Q^2) f_j\qty(x_2;Q^2) \hat{\sigma}_{ij}\qty(x_1,
x_2, Q^2)\dd{x_1}\dd{x_2}
\end{equation}
\item have to be obtained experimentally (or through lattice QCD\cite{Bhat:2020ktg})
\item have to be obtained experimentally (or through lattice
QCD\cite{Bhat:2020ktg}) at given \(Q^2\) and evolved with the
\emph{DGLAP} equations
\end{itemize}
\end{block}
\end{frame}
@ -646,7 +649,7 @@ labelformat=brace, position=top]{subcaption}
{\huge\result{xs/python/pdf/my_sigma}}
\end{center}
\begin{itemize}
\item compatible with \sherpa\
\item compatible with \sherpa: \result{xs/python/pdf/sherpa_sigma}
\item achieved \result{xs/python/pdf/samp_eff}
\item using \result{xs/python/pdf/num_increments} hypercubes
(\(N=10^7\) samples)
@ -654,7 +657,7 @@ labelformat=brace, position=top]{subcaption}
\end{frame}
\begin{frame}[allowframebreaks]{Observables}
\pnone{effect of the pt cuts}
\pnote{effect of the pt cuts}
\begin{figure}[hp]
\centering
\begin{subfigure}{.49\textwidth}
@ -687,9 +690,9 @@ labelformat=brace, position=top]{subcaption}
\item multiple interactions
\end{itemize}
\end{column}
\begin{column}{.5\textwidth}
\begin{column}{.5\textwidth}<+->
\begin{center}
\pause {\Huge \sherpa\ can model those effects}
{\Huge \sherpa\ can model those effects}
\end{center}
\end{column}
\end{columns}
@ -721,7 +724,7 @@ labelformat=brace, position=top]{subcaption}
\end{frame}
\subsection{Results}
\begin{frame}{Cross Sections}
\begin{frame}{Fiducial Cross Sections}
\pnote{
- effects of the cuts
}
@ -746,10 +749,45 @@ labelformat=brace, position=top]{subcaption}
\end{figure}
\end{column}
\begin{column}{.5\textwidth}
\begin{minipage}[c][.6\textheight][c]{\linewidth}
\begin{itemize}
\item photon system acquires recoil momentum
\item primordial \(\pt\) enhances xs in low momentum regions
\end{itemize}
\end{minipage}
\begin{onlyenv}<-+>
\begin{figure}
\centering
\begin{tikzpicture}[remember picture,overlay]
\tikzset{yshift=1.2cm}
\coordinate (origin) at (0,0);
\draw[Latex-] (origin) -- (-2,0) node[left] {\(p_1\)};
\draw[Latex-] (origin) -- (2,0) coordinate (p4) node[right] {\(p_2\)};
\draw[-Latex] (origin) -- (1.32,1.5) coordinate (p2) node[right] {\(p_3\)};
\draw[-Latex] (origin) -- (-1.32,-1.5) node[left] {\(p_4\)};
\draw[fill=black] (origin) circle (.03);
\end{tikzpicture}
\end{figure}
\end{onlyenv}
\begin{onlyenv}<+>
\begin{figure}
\centering
\begin{tikzpicture}[remember picture,overlay]
\tikzset{yshift=1.2cm}
\coordinate (origin) at (0,.1);
\coordinate (right) at (2,0);
\coordinate (left) at (-2,0);
\draw[Latex-] (origin) -- (left) node[left] {\(p_1\)};
\draw[Latex-] (origin) -- (right) coordinate (p4) node[right] {\(p_2\)};
\draw[-Latex] (origin) -- (1.32,1.7) coordinate (p2) node[right] {\(p_3\)};
\draw[-Latex] (origin) -- (-1.32,-1.3) node[left] {\(p_4\)};
\draw[fill=black] (origin) circle (.03);
\draw[dashed] (left) -- (right);
\end{tikzpicture}
\end{figure}
\end{onlyenv}
\end{column}
\end{columns}
\pnote{
@ -768,6 +806,9 @@ labelformat=brace, position=top]{subcaption}
\begin{column}{.5\textwidth}
\begin{itemize}
\item boost to higher \(\pt\)
\item low \(\pt\lesssim \SI{40}{\giga\electronvolt}\) shape
known and expected from QCD resummation of multiple emissions
(parton shower)
\item all but \stone\ stage largely compatible
\end{itemize}
\end{column}
@ -783,7 +824,8 @@ labelformat=brace, position=top]{subcaption}
\end{column}
\begin{column}{.5\textwidth}
\begin{itemize}
\item events can be recoiled past the cuts (very rare)
\item some events recoiled so both photons acquire
\(\pt > \gev{20}\) (very rare)
\item otherwise shape similar to the \stone\ stage
\begin{itemize}
\item largely governed by the PDF