bachelor_thesis/prog/python/qqgg/tangled/xs.py

154 lines
4.2 KiB
Python
Raw Normal View History

2020-03-31 15:19:51 +02:00
import numpy as np
import matplotlib.pyplot as plt
import monte_carlo
2020-03-30 15:43:55 +02:00
"""
Implementation of the analytical cross section for q q_bar ->
gamma gamma
Author: Valentin Boettcher <hiro@protagon.space>
"""
import numpy as np
# NOTE: a more elegant solution would be a decorator
def energy_factor(charge, esp):
"""
Calculates the factor common to all other values in this module
Arguments:
esp -- center of momentum energy in GeV
charge -- charge of the particle in units of the elementary charge
"""
2020-04-18 20:00:18 +02:00
return charge ** 4 / (137.036 * esp) ** 2 / 6
2020-03-30 15:43:55 +02:00
def diff_xs(θ, charge, esp):
"""
Calculates the differential cross section as a function of the
azimuth angle θ in units of 1/GeV².
2020-04-01 12:14:35 +02:00
Here =sinθdθdφ
2020-03-30 15:43:55 +02:00
Arguments:
θ -- azimuth angle
esp -- center of momentum energy in GeV
charge -- charge of the particle in units of the elementary charge
"""
f = energy_factor(charge, esp)
2020-04-18 20:00:18 +02:00
return f * ((np.cos(θ) ** 2 + 1) / np.sin(θ) ** 2)
2020-03-30 15:43:55 +02:00
2020-03-30 19:56:02 +02:00
def diff_xs_cosθ(cosθ, charge, esp):
"""
Calculates the differential cross section as a function of the
cosine of the azimuth angle θ in units of 1/GeV².
2020-04-01 12:14:35 +02:00
Here =d(cosθ)
2020-03-30 19:56:02 +02:00
Arguments:
2020-03-30 20:26:10 +02:00
cosθ -- cosine of the azimuth angle
2020-03-30 19:56:02 +02:00
esp -- center of momentum energy in GeV
charge -- charge of the particle in units of the elementary charge
"""
f = energy_factor(charge, esp)
2020-04-18 20:00:18 +02:00
return f * ((cosθ ** 2 + 1) / (1 - cosθ ** 2))
2020-03-30 19:56:02 +02:00
2020-04-02 15:55:07 +02:00
2020-03-30 15:43:55 +02:00
def diff_xs_eta(η, charge, esp):
"""
Calculates the differential cross section as a function of the
pseudo rapidity of the photons in units of 1/GeV^2.
2020-04-01 12:14:35 +02:00
This is actually the crossection dσ/(dφdη).
2020-03-30 20:26:10 +02:00
Arguments:
2020-04-01 12:14:35 +02:00
η -- pseudo rapidity
2020-03-30 20:26:10 +02:00
esp -- center of momentum energy in GeV
charge -- charge of the particle in units of the elementary charge
"""
f = energy_factor(charge, esp)
2020-04-18 20:00:18 +02:00
return f * (np.tanh(η) ** 2 + 1)
2020-03-30 20:26:10 +02:00
2020-04-02 15:55:07 +02:00
def diff_xs_p_t(p_t, charge, esp):
"""
Calculates the differential cross section as a function of the
transverse momentum (p_t) of the photons in units of 1/GeV^2.
This is actually the crossection dσ/(dφdp_t).
Arguments:
p_t -- transverse momentum in GeV
esp -- center of momentum energy in GeV
charge -- charge of the particle in units of the elementary charge
"""
f = energy_factor(charge, esp)
2020-04-18 20:00:18 +02:00
sqrt_fact = np.sqrt(1 - (2 * p_t / esp) ** 2)
return f / p_t * (1 / sqrt_fact + sqrt_fact)
2020-04-02 15:55:07 +02:00
2020-03-30 15:43:55 +02:00
def total_xs_eta(η, charge, esp):
"""
Calculates the total cross section as a function of the pseudo
rapidity of the photons in units of 1/GeV^2. If the rapditiy is
specified as a tuple, it is interpreted as an interval. Otherwise
the interval [-η, η] will be used.
Arguments:
η -- pseudo rapidity (tuple or number)
esp -- center of momentum energy in GeV
charge -- charge of the particle in units of the elementar charge
"""
f = energy_factor(charge, esp)
if not isinstance(η, tuple):
η = (-η, η)
if len(η) != 2:
2020-04-18 20:00:18 +02:00
raise ValueError("Invalid η cut.")
2020-03-30 15:43:55 +02:00
def F(x):
2020-04-18 20:00:18 +02:00
return np.tanh(x) - 2 * x
2020-03-30 15:43:55 +02:00
2020-04-18 20:00:18 +02:00
return 2 * np.pi * f * (F(η[0]) - F(η[1]))
2020-03-31 15:19:51 +02:00
2020-04-22 18:02:20 +02:00
@numpy_cache("momentum_cache")
2020-04-22 11:26:13 +02:00
def sample_momenta(sample_num, interval, charge, esp, seed=None, **kwargs):
2020-04-02 16:35:43 +02:00
"""Samples `sample_num` unweighted photon 4-momenta from the
2020-04-22 11:26:13 +02:00
cross-section. Superflous kwargs are passed on to
`sample_unweighted_array`.
2020-03-31 15:19:51 +02:00
:param sample_num: number of samples to take
:param interval: cosθ interval to sample from
:param charge: the charge of the quark
:param esp: center of mass energy
:param seed: the seed for the rng, optional, default is system
time
2020-04-02 16:35:43 +02:00
:returns: an array of 4 photon momenta
2020-04-02 16:33:30 +02:00
2020-03-31 15:19:51 +02:00
:rtype: np.ndarray
2020-04-22 11:26:13 +02:00
2020-03-31 15:19:51 +02:00
"""
2020-04-22 16:11:53 +02:00
2020-04-22 11:26:13 +02:00
cosθ_sample = monte_carlo.sample_unweighted_array(
sample_num, lambda x: diff_xs_cosθ(x, charge, esp), interval_cosθ, **kwargs
)
2020-04-24 15:01:39 +02:00
print(cosθ_sample)
2020-03-31 15:19:51 +02:00
φ_sample = np.random.uniform(0, 1, sample_num)
2020-04-02 15:55:07 +02:00
def make_momentum(esp, cosθ, φ):
2020-04-22 11:26:13 +02:00
sinθ = np.sqrt(1 - cosθ ** 2)
2020-04-22 18:02:20 +02:00
return np.array([1, sinθ * np.cos(φ), sinθ * np.sin(φ), cosθ],) * esp / 2
2020-03-31 15:19:51 +02:00
2020-04-22 11:26:13 +02:00
momenta = np.array(
[make_momentum(esp, cosθ, φ) for cosθ, φ in np.array([cosθ_sample, φ_sample]).T]
)
2020-04-02 16:35:43 +02:00
return momenta