2020-04-18 20:00:18 +02:00
|
|
|
|
"""
|
|
|
|
|
Implementation of the analytical cross section for q q_bar ->
|
|
|
|
|
γγ in the lab frame.
|
|
|
|
|
|
|
|
|
|
Author: Valentin Boettcher <hiro@protagon.space>
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
|
import monte_carlo
|
|
|
|
|
import lhapdf
|
2020-04-19 17:34:00 +02:00
|
|
|
|
from numba import jit, vectorize, float64
|
2020-04-18 20:00:18 +02:00
|
|
|
|
|
2020-04-19 16:05:58 +02:00
|
|
|
|
|
2020-04-19 17:34:00 +02:00
|
|
|
|
@vectorize([float64(float64, float64, float64, float64)], nopython=True)
|
2020-04-18 20:00:18 +02:00
|
|
|
|
def energy_factor(e_proton, charge, x_1, x_2):
|
|
|
|
|
"""Calculates the factor common to all other values in this module.
|
|
|
|
|
|
|
|
|
|
:param e_proton: proton energy per beam
|
|
|
|
|
:param charge: charge of the quark
|
|
|
|
|
:param x_1: momentum fraction of the first quark
|
|
|
|
|
:param x_2: momentum fraction of the second quark
|
|
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
return charge ** 4 / (137.036 * e_proton) ** 2 / (24 * x_1 * x_2)
|
|
|
|
|
|
2020-04-19 16:05:58 +02:00
|
|
|
|
|
2020-04-28 15:18:35 +02:00
|
|
|
|
def momenta(e_proton, x_1, x_2, cosθ, φ=None):
|
2020-04-18 20:00:18 +02:00
|
|
|
|
"""Given the Energy of the incoming protons `e_proton` and the
|
|
|
|
|
momentum fractions `x_1` and `x_2` as well as the cosine of the
|
|
|
|
|
azimuth angle of the first photon the 4-momenta of all particles
|
|
|
|
|
are calculated.
|
|
|
|
|
"""
|
2020-04-19 16:05:58 +02:00
|
|
|
|
x_1 = np.asarray(x_1)
|
|
|
|
|
x_2 = np.asarray(x_2)
|
|
|
|
|
cosθ = np.asarray(cosθ)
|
2020-04-27 09:19:56 +02:00
|
|
|
|
|
2020-04-28 15:18:35 +02:00
|
|
|
|
if φ is None:
|
|
|
|
|
φ = 0
|
|
|
|
|
cosφ = np.ones_like(cosθ)
|
|
|
|
|
sinφ = 0
|
|
|
|
|
|
|
|
|
|
else:
|
|
|
|
|
if φ == "rand":
|
|
|
|
|
φ = np.random.uniform(0, 2 * np.pi, cosθ.shape)
|
|
|
|
|
else:
|
|
|
|
|
φ = np.asarray(φ)
|
|
|
|
|
sinφ = np.sin(φ)
|
|
|
|
|
cosφ = np.cos(φ)
|
|
|
|
|
|
2020-04-19 16:05:58 +02:00
|
|
|
|
assert (
|
|
|
|
|
x_1.shape == x_2.shape == cosθ.shape
|
|
|
|
|
), "Invalid shapes for the event parameters."
|
|
|
|
|
|
2020-04-28 15:18:35 +02:00
|
|
|
|
sinθ = np.sqrt(1 - cosθ ** 2)
|
|
|
|
|
|
2020-04-27 09:19:56 +02:00
|
|
|
|
ones = np.ones_like(cosθ)
|
|
|
|
|
zeros = np.zeros_like(cosθ)
|
|
|
|
|
|
|
|
|
|
q_1 = e_proton * x_1 * np.array([ones, zeros, zeros, ones,])
|
2020-04-28 15:18:35 +02:00
|
|
|
|
q_2 = e_proton * x_2 * np.array([ones, zeros, zeros, -ones,])
|
2020-04-19 16:05:58 +02:00
|
|
|
|
g_3 = (
|
2020-04-28 15:18:35 +02:00
|
|
|
|
2
|
|
|
|
|
* e_proton
|
|
|
|
|
* x_1
|
|
|
|
|
* x_2
|
|
|
|
|
/ (x_1 + x_2 - (x_1 - x_2) * cosθ)
|
|
|
|
|
* np.array([1 * np.ones_like(cosθ), sinθ * sinφ, cosφ * sinθ, cosθ])
|
2020-04-18 20:00:18 +02:00
|
|
|
|
)
|
|
|
|
|
g_4 = q_1 + q_2 - g_3
|
|
|
|
|
|
2020-04-19 16:05:58 +02:00
|
|
|
|
q_1 = q_1.reshape(4, cosθ.size).T
|
|
|
|
|
q_2 = q_2.reshape(4, cosθ.size).T
|
|
|
|
|
g_3 = g_3.reshape(4, cosθ.size).T
|
|
|
|
|
g_4 = g_4.reshape(4, cosθ.size).T
|
|
|
|
|
|
|
|
|
|
return np.array([q_1, q_2, g_3, g_4])
|
2020-04-18 20:00:18 +02:00
|
|
|
|
|
|
|
|
|
|
2020-04-19 17:34:00 +02:00
|
|
|
|
@vectorize([float64(float64, float64, float64, float64, float64)], nopython=True)
|
2020-04-19 16:05:58 +02:00
|
|
|
|
def diff_xs_η(e_proton, charge, η, x_1, x_2):
|
|
|
|
|
"""Calculates the differential cross section as a function of the
|
|
|
|
|
cosine of the pseudo rapidity η of one photon in units of 1/GeV².
|
|
|
|
|
|
|
|
|
|
Here dΩ=dηdφ
|
|
|
|
|
|
|
|
|
|
:param e_proton: proton energy per beam [GeV]
|
|
|
|
|
:param charge: charge of the quark
|
|
|
|
|
:param x_1: momentum fraction of the first quark
|
|
|
|
|
:param x_2: momentum fraction of the second quark
|
|
|
|
|
:param η: pseudo rapidity
|
|
|
|
|
|
|
|
|
|
:return: the differential cross section [GeV^{-2}]
|
|
|
|
|
"""
|
2020-04-27 09:19:56 +02:00
|
|
|
|
|
|
|
|
|
rap = np.arctanh((x_1 - x_2) / (x_1 + x_2))
|
2020-04-19 16:05:58 +02:00
|
|
|
|
f = energy_factor(e_proton, charge, x_1, x_2)
|
|
|
|
|
|
2020-04-27 09:19:56 +02:00
|
|
|
|
return f * ((np.tanh(η - rap)) ** 2 + 1)
|
2020-04-18 20:00:18 +02:00
|
|
|
|
|
2020-04-19 17:34:00 +02:00
|
|
|
|
|
|
|
|
|
@vectorize([float64(float64, float64, float64)], nopython=True)
|
|
|
|
|
def averaged_tchanel_q2(e_proton, x_1, x_2):
|
|
|
|
|
return 2 * x_1 * x_2 * e_proton ** 2
|
|
|
|
|
|
2020-04-26 18:07:08 +02:00
|
|
|
|
|
|
|
|
|
def cut_pT_from_eta(greater_than=0):
|
|
|
|
|
def cut(e_proton, η, x1, x2):
|
|
|
|
|
cosθ = np.cos(η_to_θ(η))
|
|
|
|
|
_, _, p1, p2 = momenta(e_proton, x1, x2, cosθ)
|
|
|
|
|
return (
|
|
|
|
|
np.sqrt((p1[0][1:3] ** 2).sum()) > greater_than
|
|
|
|
|
and np.sqrt((p2[0][1:3] ** 2).sum()) > greater_than
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
return cut
|
|
|
|
|
|
2020-04-19 17:34:00 +02:00
|
|
|
|
from numba.extending import get_cython_function_address
|
|
|
|
|
|
2020-04-24 15:28:12 +02:00
|
|
|
|
|
2020-04-26 18:07:08 +02:00
|
|
|
|
def get_xs_distribution_with_pdf(xs, q, e_hadron, quarks=None, pdf=None, cut=None):
|
2020-04-18 20:00:18 +02:00
|
|
|
|
"""Creates a function that takes an event (type np.ndarray) of the
|
2020-04-28 15:18:35 +02:00
|
|
|
|
form [angle_arg, impulse fractions of quarks in hadron 1, impulse
|
2020-04-19 16:05:58 +02:00
|
|
|
|
fractions of quarks in hadron 2] and returns the differential
|
|
|
|
|
cross section for such an event. I would have used an object as
|
|
|
|
|
argument, wasn't for the sampling function that needs a vector
|
2020-04-28 15:18:35 +02:00
|
|
|
|
valued function. Angle_Arg can actually be any angular-like parameter
|
2020-04-19 16:05:58 +02:00
|
|
|
|
as long as the xs has the corresponding parameter.
|
2020-04-18 20:00:18 +02:00
|
|
|
|
|
2020-04-28 15:18:35 +02:00
|
|
|
|
:param xs: cross section function with signature (energy hadron, angle_arg, x_1, x_2)
|
2020-04-18 20:00:18 +02:00
|
|
|
|
:param q2: the momentum transfer Q^2 as a function with the signature
|
2020-04-19 17:34:00 +02:00
|
|
|
|
(e_hadron, x_1, x_2)
|
2020-04-18 20:00:18 +02:00
|
|
|
|
:param quarks: the constituent quarks np.ndarray of the form [[id, charge], ...],
|
|
|
|
|
the default is a proton
|
|
|
|
|
:param pdf: the PDF to use, the default is "NNPDF31_lo_as_0118"
|
2020-04-28 15:18:35 +02:00
|
|
|
|
:param cut: cut function with signature (energy hadron, angle_arg, x_1,
|
2020-04-26 18:07:08 +02:00
|
|
|
|
x_2) to return 0, when the event does not fit the cut
|
|
|
|
|
|
2020-04-18 20:00:18 +02:00
|
|
|
|
:returns: differential cross section summed over flavors and weighted with the pdfs
|
|
|
|
|
:rtype: function
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
pdf = pdf or lhapdf.mkPDF("NNPDF31_lo_as_0118", 0)
|
2020-04-28 15:18:35 +02:00
|
|
|
|
quarks = quarks or np.array(
|
|
|
|
|
[[5, -1 / 3], [4, 2 / 3], [3, -1 / 3], [2, 2 / 3], [1, -1 / 3]]
|
|
|
|
|
) # proton
|
2020-04-18 20:00:18 +02:00
|
|
|
|
supported_quarks = pdf.flavors()
|
|
|
|
|
for flavor in quarks[:, 0]:
|
|
|
|
|
assert flavor in supported_quarks, (
|
|
|
|
|
"The PDF doesn't support the quark flavor " + flavor
|
|
|
|
|
)
|
|
|
|
|
|
2020-04-19 17:34:00 +02:00
|
|
|
|
xfxQ2 = pdf.xfxQ2
|
|
|
|
|
|
|
|
|
|
# @jit(float64(float64[4])) Unfortunately that does not work as yet!
|
2020-04-18 20:00:18 +02:00
|
|
|
|
def distribution(event: np.ndarray) -> float:
|
2020-04-26 18:07:08 +02:00
|
|
|
|
if cut and not cut(e_hadron, *event):
|
|
|
|
|
return 0
|
|
|
|
|
|
2020-04-28 15:18:35 +02:00
|
|
|
|
angle_arg, x_1, x_2 = event
|
2020-04-18 20:00:18 +02:00
|
|
|
|
|
2020-04-19 17:34:00 +02:00
|
|
|
|
q2_value = q(e_hadron, x_1, x_2)
|
2020-04-18 20:00:18 +02:00
|
|
|
|
result = 0
|
|
|
|
|
|
|
|
|
|
for quark, charge in quarks:
|
2020-04-28 15:18:35 +02:00
|
|
|
|
xs_value = xs(e_hadron, charge, angle_arg, x_1, x_2)
|
2020-04-18 20:00:18 +02:00
|
|
|
|
result += (
|
2020-04-24 15:28:12 +02:00
|
|
|
|
(xfxQ2(quark, x_1, q2_value) + xfxQ2(-quark, x_1, q2_value))
|
2020-04-28 15:18:35 +02:00
|
|
|
|
/ x_1
|
|
|
|
|
* (xfxQ2(-quark, x_2, q2_value) + xfxQ2(quark, x_2, q2_value))
|
|
|
|
|
/ x_2
|
2020-04-18 20:00:18 +02:00
|
|
|
|
* xs_value
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
return result
|
|
|
|
|
|
|
|
|
|
return distribution, (pdf.xMin, pdf.xMax)
|
|
|
|
|
|
2020-04-24 15:01:39 +02:00
|
|
|
|
def sample_momenta(num_samples, dist, interval, e_hadron, upper_bound=None, **kwargs):
|
2020-04-19 16:05:58 +02:00
|
|
|
|
res, eff = monte_carlo.sample_unweighted_array(
|
2020-04-24 15:01:39 +02:00
|
|
|
|
num_samples,
|
|
|
|
|
dist,
|
|
|
|
|
interval,
|
|
|
|
|
upper_bound=upper_bound,
|
|
|
|
|
report_efficiency=True,
|
|
|
|
|
**kwargs
|
2020-04-19 16:05:58 +02:00
|
|
|
|
)
|
|
|
|
|
cosθ, x_1, x_2 = res.T
|
|
|
|
|
return momenta(e_hadron, x_1[None, :], x_2[None, :], cosθ[None, :]), eff
|