bachelor_thesis/prog/python/qqgg/tangled/xs.py

127 lines
3.7 KiB
Python
Raw Normal View History

2020-03-31 15:19:51 +02:00
import numpy as np
import matplotlib.pyplot as plt
import monte_carlo
2020-03-30 15:43:55 +02:00
"""
Implementation of the analytical cross section for q q_bar ->
gamma gamma
Author: Valentin Boettcher <hiro@protagon.space>
"""
import numpy as np
# NOTE: a more elegant solution would be a decorator
def energy_factor(charge, esp):
"""
Calculates the factor common to all other values in this module
Arguments:
esp -- center of momentum energy in GeV
charge -- charge of the particle in units of the elementary charge
"""
2020-04-01 13:55:22 +02:00
return charge**4*/(137.036*esp)**2/6
2020-03-30 15:43:55 +02:00
def diff_xs(θ, charge, esp):
"""
Calculates the differential cross section as a function of the
azimuth angle θ in units of 1/GeV².
2020-04-01 12:14:35 +02:00
Here =sinθdθdφ
2020-03-30 15:43:55 +02:00
Arguments:
θ -- azimuth angle
esp -- center of momentum energy in GeV
charge -- charge of the particle in units of the elementary charge
"""
f = energy_factor(charge, esp)
return f*((np.cos(θ)**2+1)/np.sin(θ)**2)
2020-03-30 15:43:55 +02:00
2020-03-30 19:56:02 +02:00
def diff_xs_cosθ(cosθ, charge, esp):
"""
Calculates the differential cross section as a function of the
cosine of the azimuth angle θ in units of 1/GeV².
2020-04-01 12:14:35 +02:00
Here =d(cosθ)
2020-03-30 19:56:02 +02:00
Arguments:
2020-03-30 20:26:10 +02:00
cosθ -- cosine of the azimuth angle
2020-03-30 19:56:02 +02:00
esp -- center of momentum energy in GeV
charge -- charge of the particle in units of the elementary charge
"""
f = energy_factor(charge, esp)
return f*((cosθ**2+1)/(1-cosθ**2))
2020-03-30 15:43:55 +02:00
def diff_xs_eta(η, charge, esp):
"""
Calculates the differential cross section as a function of the
pseudo rapidity of the photons in units of 1/GeV^2.
2020-04-01 12:14:35 +02:00
This is actually the crossection dσ/(dφdη).
2020-03-30 20:26:10 +02:00
Arguments:
2020-04-01 12:14:35 +02:00
η -- pseudo rapidity
2020-03-30 20:26:10 +02:00
esp -- center of momentum energy in GeV
charge -- charge of the particle in units of the elementary charge
"""
f = energy_factor(charge, esp)
2020-04-01 12:14:35 +02:00
return f*(2*np.cosh(η)**2 - 1)*2*np.exp(-η)/np.cosh(η)**2
2020-03-30 20:26:10 +02:00
2020-03-30 15:43:55 +02:00
def total_xs_eta(η, charge, esp):
"""
Calculates the total cross section as a function of the pseudo
rapidity of the photons in units of 1/GeV^2. If the rapditiy is
specified as a tuple, it is interpreted as an interval. Otherwise
the interval [-η, η] will be used.
Arguments:
η -- pseudo rapidity (tuple or number)
esp -- center of momentum energy in GeV
charge -- charge of the particle in units of the elementar charge
"""
f = energy_factor(charge, esp)
if not isinstance(η, tuple):
η = (-η, η)
if len(η) != 2:
raise ValueError('Invalid η cut.')
def F(x):
return np.tanh(x) - 2*x
return 2*np.pi*f*(F(η[0]) - F(η[1]))
2020-03-31 15:19:51 +02:00
def sample_impulses(sample_num, interval, charge, esp, seed=None):
"""Samples `sample_num` unweighted photon 4-impulses from the cross-section.
:param sample_num: number of samples to take
:param interval: cosθ interval to sample from
:param charge: the charge of the quark
:param esp: center of mass energy
:param seed: the seed for the rng, optional, default is system
time
:returns: an array of 4 photon impulses
:rtype: np.ndarray
"""
cosθ_sample = \
monte_carlo.sample_unweighted_array(sample_num,
lambda x:
diff_xs_cosθ(x, charge, esp),
interval_cosθ)
φ_sample = np.random.uniform(0, 1, sample_num)
def make_impulse(esp, cosθ, φ):
sinθ = np.sqrt(1-cosθ**2)
return np.array([1, sinθ*np.cos(φ), sinθ*np.sin(φ), cosθ])*esp/2
impulses = np.array([make_impulse(esp, cosθ, φ) \
for cosθ, φ in np.array([cosθ_sample, φ_sample]).T])
return impulses