bachelor_thesis/prog/python/qqgg/monte_carlo.py

265 lines
9.5 KiB
Python
Raw Normal View History

"""
Simple monte carlo integration implementation.
Author: Valentin Boettcher <hiro@protagon.space>
"""
import numpy as np
from scipy.optimize import minimize_scalar, root
2020-03-31 13:21:45 +02:00
def _process_interval(interval):
assert len(interval) == 2, 'An interval has two endpoints'
a, b = interval
if b < a:
a, b = b, a
2020-03-31 15:19:51 +02:00
return [a, b]
2020-03-31 13:21:45 +02:00
def integrate(f, interval, point_density=1000, seed=None, **kwargs):
"""Monte-Carlo integrates the functin `f` in an interval.
:param f: function of one variable, kwargs are passed to it
:param tuple interval: a 2-tuple of numbers, specifiying the
integration range
:returns: the integration result
:rtype: float
"""
2020-03-31 13:21:45 +02:00
interval = _process_interval(interval)
if seed:
np.random.seed(seed)
2020-03-31 13:21:45 +02:00
interval_length = (interval[1] - interval[0])
num_points = int(interval_length * point_density)
2020-03-31 13:21:45 +02:00
points = np.random.uniform(interval[0], interval[1], num_points)
sample = f(points, **kwargs)
integral = np.sum(sample)/num_points*interval_length
2020-04-02 08:38:53 +02:00
# the deviation gets multiplied by the square root of the interval
# lenght, because it is the standard deviation of the integral.
deviation = np.std(sample)*np.sqrt(1/(num_points - 1))*interval_length
2020-03-31 13:21:45 +02:00
return integral, deviation
2020-03-31 15:19:51 +02:00
2020-03-31 13:21:45 +02:00
def find_upper_bound(f, interval, **kwargs):
"""Find the upper bound of a function.
2020-03-31 13:21:45 +02:00
:param f: function of one scalar and some kwargs that are passed
on to it
:param interval: interval to look in
2020-03-31 13:21:45 +02:00
:returns: the upper bound of the function
:rtype: float
"""
2020-03-31 13:21:45 +02:00
upper_bound = minimize_scalar(lambda *args: -f(*args, **kwargs),
bounds=interval, method='bounded')
if upper_bound.success:
return -upper_bound.fun
else:
raise RuntimeError('Could not find an upper bound.')
2020-04-02 08:38:53 +02:00
2020-03-31 13:21:45 +02:00
def sample_unweighted(f, interval, upper_bound=None, seed=None,
chunk_size=100, report_efficiency=False, **kwargs):
2020-03-31 13:21:45 +02:00
"""Samples a distribution proportional to f by hit and miss.
Implemented as a generator.
:param f: function of one scalar to sample, should be positive,
superflous kwargs are passed to it
:param interval: the interval to sample from
:param upper_bound: an upper bound to the function, optional
:param seed: the seed for the rng, if not specified, the system
time is used
:param chunk_size: the size of the chunks of random numbers
allocated per unit interval
:yields: random nubers following the distribution of f
:rtype: float
"""
2020-03-31 13:21:45 +02:00
interval = _process_interval(interval)
interval_length = (interval[1] - interval[0])
upper_bound_fn, upper_bound_integral, upper_bound_integral_inverse = None, None, None
# i know....
if not upper_bound:
upper_bound_value = find_upper_bound(f, interval, **kwargs)
def upper_bound_fn(x): return upper_bound_value
def upper_bound_integral(x): return upper_bound_value*x
def upper_bound_integral_inverse(y): return y/upper_bound_value
elif len(upper_bound) == 2:
upper_bound_fn, upper_bound_integral =\
upper_bound
def upper_inv(points): # not for performance right now...
return np.array([root(lambda y: upper_bound_integral(y) - x, x0=0,
jac=upper_bound_fn).x for x in points]).T
upper_bound_integral_inverse = upper_inv
elif len(upper_bound) == 3:
upper_bound_fn, upper_bound_integral, upper_bound_integral_inverse =\
upper_bound
else:
raise ValueError('The upper bound must be `None` or a three element sequence!')
2020-03-31 13:21:45 +02:00
def allocate_random_chunk():
return np.random.uniform([upper_bound_integral(interval[0]), 0],
[upper_bound_integral(interval[1]), 1],
2020-03-31 15:19:51 +02:00
[int(chunk_size*interval_length), 2])
2020-03-31 13:21:45 +02:00
total_points = 0
total_accepted = 0
2020-03-31 13:21:45 +02:00
while True:
points = allocate_random_chunk()
points[:, 0] = upper_bound_integral_inverse(points[:, 0])
2020-03-31 13:21:45 +02:00
sample_points = points[:, 0] \
[np.where(f(points[:, 0]) > \
points[:, 1]*upper_bound_fn(points[:, 0]))]
if report_efficiency:
total_points += points.size
total_accepted += sample_points.size
2020-03-31 13:21:45 +02:00
for point in sample_points:
yield (point, total_accepted/total_points) \
if report_efficiency else point
2020-03-31 15:19:51 +02:00
def sample_unweighted_array(num, *args, report_efficiency=False, **kwargs):
2020-03-31 15:19:51 +02:00
"""Sample `num` elements from a distribution. The rest of the
arguments is analogous to `sample_unweighted`.
"""
sample_arr = np.empty(num)
samples = sample_unweighted(*args, report_efficiency=report_efficiency,
**kwargs)
for i, sample in zip(range(num), samples):
if report_efficiency:
sample_arr[i], _ = sample
else:
sample_arr[i] = sample
return (sample_arr, next(samples)[1]) if report_efficiency else sample_arr
2020-04-03 14:05:30 +02:00
2020-04-03 18:55:41 +02:00
def integrate_vegas(f, interval, seed=None, num_increments=5,
2020-04-03 19:20:20 +02:00
point_density=1000, epsilon=1e-3, alpha=1.5, **kwargs):
"""Integrate the given function (in one dimension) with the vegas
algorithm to reduce variance. This implementation follows the
description given in JOURNAL OF COMPUTATIONAL 27, 192-203 (1978),
but does not calculate a cumulative estimate.
2020-04-03 18:55:41 +02:00
2020-04-03 19:20:20 +02:00
:param f: function of one variable, kwargs are passed to it
:param tuple interval: a 2-tuple of numbers, specifiying the
integration range
:param seed: the seed for the rng, if not specified, the system
time is used
:param num_increments: the number increments in which to divide
the interval
:param point_density: the number of random points per unit
interval
:param epsilon: the breaking condition, if the magnitude of the
difference between the increment positions in subsequent
iterations does not change more then epsilon*num_increments
the computation is considered to have converged
:param alpha: controls the the convergence speed, should be
between 1 and 2
:returns: the intregal, the standard deviation, an array of
increment borders which can be used in subsequent
sampling
:rtype: tuple
"""
2020-04-03 18:55:41 +02:00
2020-04-03 19:20:20 +02:00
Interval = _process_interval(interval)
2020-04-03 18:55:41 +02:00
interval_length = (interval[1] - interval[0])
2020-04-03 19:20:20 +02:00
if seed:
np.random.seed(seed)
2020-04-03 18:55:41 +02:00
# start with equally sized intervals
interval_borders = np.linspace(*interval, num_increments + 1, endpoint=True)
points_per_increment = int(point_density*interval_length/num_increments)
total_points = points_per_increment*num_increments
2020-04-03 19:20:20 +02:00
def evaluate_integrand(interval_borders, interval_lengths):
2020-04-03 18:55:41 +02:00
intervals = np.array((interval_borders[:-1], interval_borders[1:]))
sample_points = np.random.uniform(*intervals,
(points_per_increment, num_increments)).T
2020-04-03 19:20:20 +02:00
weighted_f_values = f(sample_points, **kwargs)*interval_lengths[:, None]
# here the num_increments don't cancel
2020-04-03 18:55:41 +02:00
weighted_f_squared_values = (f(sample_points, **kwargs) \
2020-04-03 19:20:20 +02:00
*interval_lengths[:, None])**2*num_increments
2020-04-03 18:55:41 +02:00
integral_steps = weighted_f_values.mean(axis=1)
integral = integral_steps.sum()
variance = 1/(total_points - 1)\
*(weighted_f_squared_values.mean(axis=1).sum() - integral**2)
return integral_steps.sum(), integral_steps, variance
K = num_increments*1000
increment_borders = interval_borders[1:-1] - interval_borders[0]
2020-04-03 19:20:20 +02:00
2020-04-03 18:55:41 +02:00
while True:
interval_lengths = interval_borders[1:] - interval_borders[:-1]
2020-04-03 19:20:20 +02:00
integral, integral_steps, variance = evaluate_integrand(interval_borders, interval_lengths)
# alpha controls the convergence speed
μ = np.abs(integral_steps)/integral
new_increments = (K*((μ - 1)/(np.log(μ)))**alpha).astype(int)
group_size = new_increments.sum()/num_increments
2020-04-03 18:55:41 +02:00
new_increment_borders = np.empty_like(increment_borders)
2020-04-03 19:20:20 +02:00
# this whole code does a very simple thing: it eats up
# sub-increments until it has `group_size` of them
i = 0 # position in increment count list
j = 0 # position in new_incerement_borders
rest = new_increments[0] # the number of sub-increments still available
head = group_size # the number of sub-increments needed to
# fill one increment
current = 0 # the current position in the interval relative
# to its beginning
while i < num_increments and (j < (num_increments - 1)):
2020-04-03 18:55:41 +02:00
if new_increments[i] == 0:
i += 1
rest = new_increments[i]
current_increment_size = interval_lengths[i]/new_increments[i]
if head <= rest:
current += head*current_increment_size
new_increment_borders[j] = current
rest -= head
head = group_size
2020-04-03 19:20:20 +02:00
j += 1
2020-04-03 18:55:41 +02:00
else:
current += rest*current_increment_size
2020-04-03 19:20:20 +02:00
head -= rest
2020-04-03 18:55:41 +02:00
i += 1
rest = new_increments[i]
interval_borders[1:-1] = interval_borders[0] + increment_borders
2020-04-03 19:20:20 +02:00
if np.linalg.norm(increment_borders - new_increment_borders)\
*num_increments < epsilon:
2020-04-03 18:55:41 +02:00
return integral, np.sqrt(variance), interval_borders
2020-04-03 19:20:20 +02:00
2020-04-03 18:55:41 +02:00
increment_borders = new_increment_borders