mirror of
https://github.com/vale981/arb
synced 2025-03-06 01:41:39 -05:00
330 lines
7.8 KiB
C
330 lines
7.8 KiB
C
/*=============================================================================
|
|
|
|
This file is part of ARB.
|
|
|
|
ARB is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
ARB is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with ARB; if not, write to the Free Software
|
|
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
|
|
|
=============================================================================*/
|
|
/******************************************************************************
|
|
|
|
Copyright (C) 2012 Fredrik Johansson
|
|
|
|
******************************************************************************/
|
|
|
|
#include <math.h>
|
|
#include "fmprb.h"
|
|
#include "double_extras.h"
|
|
|
|
double fmpr_get_d(const fmpr_t x);
|
|
|
|
#define LOG2 0.69314718055994530942
|
|
#define EXP1 2.7182818284590452354
|
|
|
|
double d_root(double x, int r)
|
|
{
|
|
if (r == 1)
|
|
return x;
|
|
if (r == 2)
|
|
return sqrt(x);
|
|
return pow(x, 1. / r);
|
|
}
|
|
|
|
/*
|
|
Estimate the truncation point to obtain accuracy 2^(-prec) with the
|
|
hypergeometric series |z|^k / (k!)^r.
|
|
*/
|
|
long
|
|
estimate_nterms(double z, int r, long prec)
|
|
{
|
|
double y;
|
|
|
|
z = fabs(z);
|
|
|
|
if (z == 0)
|
|
return 1;
|
|
|
|
if (r == 0)
|
|
{
|
|
if (z >= 1)
|
|
{
|
|
printf("z must be smaller than 1\n");
|
|
abort();
|
|
}
|
|
|
|
y = (log(1-z) - prec * LOG2) / log(z) + 1;
|
|
}
|
|
else
|
|
{
|
|
/* Solve k*log(z) - r*(k*log(k)-k) = -prec*log(2) */
|
|
y = prec * LOG2 / (d_root(z, r) * EXP1 * r);
|
|
y = prec * LOG2 / (r * d_lambertw(y)) + 1;
|
|
}
|
|
|
|
if (y >= LONG_MAX / 2)
|
|
{
|
|
printf("error: series will converge too slowly\n");
|
|
abort();
|
|
}
|
|
|
|
return y;
|
|
}
|
|
|
|
void
|
|
fmpr_gamma_ui_lbound(fmpr_t x, ulong n, long prec)
|
|
{
|
|
if (n == 0) abort();
|
|
|
|
if (n < 250)
|
|
{
|
|
fmpz_t t;
|
|
fmpz_init(t);
|
|
fmpz_fac_ui(t, n - 1);
|
|
fmpr_set_fmpz(x, t);
|
|
fmpr_set_round(x, x, prec, FMPR_RND_DOWN);
|
|
fmpz_clear(t);
|
|
}
|
|
else
|
|
{
|
|
/* (2 pi/x)^(1/2) * (x/e)^x < Gamma(x) */
|
|
fmpr_t t, u;
|
|
|
|
fmpr_init(t);
|
|
fmpr_init(u);
|
|
|
|
/* lower bound for 2 pi */
|
|
fmpr_set_ui_2exp_si(t, 843314855, -27);
|
|
fmpr_div_ui(t, t, n, prec, FMPR_RND_DOWN);
|
|
fmpr_sqrt(t, t, prec, FMPR_RND_DOWN);
|
|
|
|
/* lower bound for 1/e */
|
|
fmpr_set_ui_2exp_si(u, 197503771, -29);
|
|
fmpr_mul_ui(u, u, n, prec, FMPR_RND_DOWN);
|
|
|
|
fmpr_pow_sloppy_ui(u, u, n, prec, FMPR_RND_DOWN);
|
|
|
|
fmpr_mul(x, t, u, prec, FMPR_RND_DOWN);
|
|
|
|
fmpr_clear(t);
|
|
fmpr_clear(u);
|
|
}
|
|
}
|
|
|
|
void
|
|
fmpr_gamma_ui_ubound(fmpr_t x, ulong n, long prec)
|
|
{
|
|
if (n == 0) abort();
|
|
|
|
if (n < 250)
|
|
{
|
|
fmpz_t t;
|
|
fmpz_init(t);
|
|
fmpz_fac_ui(t, n - 1);
|
|
fmpr_set_fmpz(x, t);
|
|
fmpr_set_round(x, x, prec, FMPR_RND_UP);
|
|
fmpz_clear(t);
|
|
}
|
|
else
|
|
{
|
|
fmpr_t t, u;
|
|
fmpr_init(t);
|
|
|
|
/* Gamma(x) < e * (x / e)^x -- TODO: use a tighter bound */
|
|
|
|
fmpr_init(t);
|
|
fmpr_init(u);
|
|
|
|
/* upper bound for 1/e */
|
|
fmpr_set_ui_2exp_si(u, 197503773, -29);
|
|
fmpr_mul_ui(u, u, n, prec, FMPR_RND_UP);
|
|
fmpr_pow_sloppy_ui(u, u, n, prec, FMPR_RND_UP);
|
|
|
|
/* upper bound for e */
|
|
fmpr_set_ui_2exp_si(t, 364841613, -27);
|
|
fmpr_mul(x, t, u, prec, FMPR_RND_UP);
|
|
|
|
fmpr_clear(t);
|
|
fmpr_clear(u);
|
|
}
|
|
}
|
|
|
|
/* FIXME: assumes no overflow when computing n + r */
|
|
static void
|
|
fmpr_rfac_uiui_ubound(fmpr_t x, ulong n, ulong r, long prec)
|
|
{
|
|
if (r == 0)
|
|
{
|
|
fmpr_one(x);
|
|
}
|
|
else if (r == 1)
|
|
{
|
|
fmpr_set_ui(x, n);
|
|
}
|
|
else
|
|
{
|
|
fmpr_t t;
|
|
fmpr_init(t);
|
|
fmpr_gamma_ui_ubound(x, n + r, prec);
|
|
fmpr_gamma_ui_lbound(t, n, prec);
|
|
fmpr_div(x, x, t, prec, FMPR_RND_UP);
|
|
fmpr_clear(t);
|
|
}
|
|
}
|
|
|
|
static void
|
|
fmpr_rfac_uiui_lbound(fmpr_t x, ulong n, ulong r, long prec)
|
|
{
|
|
if (r == 0)
|
|
{
|
|
fmpr_one(x);
|
|
}
|
|
else if (r == 1)
|
|
{
|
|
fmpr_set_ui(x, n);
|
|
}
|
|
else
|
|
{
|
|
fmpr_t t;
|
|
fmpr_init(t);
|
|
fmpr_gamma_ui_lbound(x, n + r, prec);
|
|
fmpr_gamma_ui_ubound(t, n, prec);
|
|
fmpr_div(x, x, t, prec, FMPR_RND_DOWN);
|
|
fmpr_clear(t);
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
|
|
The general term T(k) is z^k / (k!)^r * R(k) where R(k) = 1 + O(1/k).
|
|
|
|
We have precomputed integers A, B, K such that for all k > K,
|
|
|R(k)| <= F(k) = k(k-B)/((k-A)(k-2B)) = (1+A/(k-A))(1+B/(k-2B)).
|
|
|
|
*/
|
|
long
|
|
hypgeom_bound(fmpr_t error, int r,
|
|
long A, long B, long K, const fmpr_t TK, const fmpr_t z, long prec)
|
|
{
|
|
fmpr_t Tn, t, u, one, tol;
|
|
long wp = FMPRB_RAD_PREC;
|
|
long n;
|
|
double zd;
|
|
|
|
fmpr_init(Tn);
|
|
fmpr_init(t);
|
|
fmpr_init(u);
|
|
fmpr_init(one);
|
|
fmpr_init(tol);
|
|
|
|
fmpr_one(one);
|
|
fmpr_set_ui_2exp_si(tol, 1UL, -prec);
|
|
|
|
zd = fmpr_get_d(z);
|
|
|
|
n = estimate_nterms(zd, r, prec);
|
|
|
|
/* required for 1 + O(1/k) part to be decreasing */
|
|
n = FLINT_MAX(n, K + 1);
|
|
|
|
/* required for z^k / (k!)^r to be decreasing
|
|
(TODO: don't use doubles for this) */
|
|
if (r > 0)
|
|
{
|
|
long nbd = d_root(zd, r) + 2;
|
|
n = FLINT_MAX(n, nbd);
|
|
}
|
|
|
|
/* We are now sure that |R(k)| is either decreasing or strictly
|
|
smaller than 1 for k >= n, which means that we can bound the tail
|
|
using a geometric series as soon as soon as |R(k)| < 1 */
|
|
|
|
/* Compute an upper bound for T(n) */
|
|
/* (z^n) / (n!)^r * TK * [(K+1)(K+2)...(n)] * [(K-B+1)(K-B+2)...(n-B)]
|
|
---------------------------------------------
|
|
[(K-A+1)(K-A+2)...(n)] * [(K-2B+1)(K-2B+2)...(n-2B)]
|
|
*/
|
|
|
|
/* z^n * TK */
|
|
fmpr_pow_sloppy_ui(Tn, z, n, wp, FMPR_RND_UP);
|
|
fmpr_mul(Tn, Tn, TK, wp, FMPR_RND_UP);
|
|
|
|
/* divide by (n!)^r */
|
|
if (r != 0)
|
|
{
|
|
fmpr_gamma_ui_lbound(t, n + 1, wp);
|
|
fmpr_ui_div(t, 1UL, t, wp, FMPR_RND_UP);
|
|
fmpr_pow_sloppy_ui(t, t, r, wp, FMPR_RND_UP);
|
|
fmpr_mul(Tn, Tn, t, wp, FMPR_RND_UP);
|
|
}
|
|
|
|
fmpr_rfac_uiui_ubound(t, K+1, n-K, wp);
|
|
fmpr_mul(Tn, Tn, t, wp, FMPR_RND_UP);
|
|
|
|
fmpr_rfac_uiui_ubound(t, K-B+1, n-K, wp);
|
|
fmpr_mul(Tn, Tn, t, wp, FMPR_RND_UP);
|
|
|
|
fmpr_rfac_uiui_lbound(t, K-A+1, n-K, wp);
|
|
fmpr_div(Tn, Tn, t, wp, FMPR_RND_UP);
|
|
|
|
fmpr_rfac_uiui_lbound(t, K-2*B+1, n-K, wp);
|
|
fmpr_div(Tn, Tn, t, wp, FMPR_RND_UP);
|
|
|
|
while (1)
|
|
{
|
|
/* bound for term ratio: z * F(n) / n^r */
|
|
|
|
/* F(n) <= n (n-B) / ((n-A) (n-2B)) */
|
|
fmpr_set_ui(t, n);
|
|
fmpr_mul_ui(t, t, n - B, wp, FMPR_RND_UP);
|
|
fmpr_div_ui(t, t, n - A, wp, FMPR_RND_UP);
|
|
fmpr_div_ui(t, t, n - 2*B, wp, FMPR_RND_UP);
|
|
|
|
fmpr_mul(t, t, z, wp, FMPR_RND_UP);
|
|
|
|
if (r != 0)
|
|
{
|
|
fmpr_div_ui(u, one, n, wp, FMPR_RND_UP);
|
|
fmpr_pow_sloppy_ui(u, u, r, wp, FMPR_RND_UP);
|
|
fmpr_mul(t, t, u, wp, FMPR_RND_UP);
|
|
}
|
|
|
|
/* bound by geometric series: Tn / (1 - t) */
|
|
/* where the term ratio must be < 1 */
|
|
fmpr_sub(u, one, t, wp, FMPR_RND_DOWN);
|
|
|
|
if (fmpr_sgn(u) > 0)
|
|
{
|
|
fmpr_div(u, Tn, u, wp, FMPR_RND_UP);
|
|
|
|
if (fmpr_cmp(u, tol) < 0)
|
|
{
|
|
fmpr_set(error, u);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* move on to next term */
|
|
fmpr_mul(Tn, Tn, t, wp, FMPR_RND_UP);
|
|
n++;
|
|
}
|
|
|
|
fmpr_clear(Tn);
|
|
fmpr_clear(t);
|
|
fmpr_clear(u);
|
|
fmpr_clear(one);
|
|
fmpr_clear(tol);
|
|
|
|
return n;
|
|
}
|