mirror of
https://github.com/vale981/arb
synced 2025-03-06 01:41:39 -05:00
167 lines
4.7 KiB
C
167 lines
4.7 KiB
C
/*=============================================================================
|
|
|
|
This file is part of ARB.
|
|
|
|
ARB is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
ARB is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with ARB; if not, write to the Free Software
|
|
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
|
|
|
=============================================================================*/
|
|
/******************************************************************************
|
|
|
|
Copyright (C) 2013 Fredrik Johansson
|
|
|
|
******************************************************************************/
|
|
|
|
#include "zeta.h"
|
|
#include "fmpcb.h"
|
|
#include "fmpcb_poly.h"
|
|
|
|
void _fmpcb_poly_fmpcb_invpow_cpx(fmpcb_ptr res,
|
|
const fmpcb_t N, const fmpcb_t c, long trunc, long prec);
|
|
|
|
#define POWER(_k) (powers + (((_k)-1)/2) * (len))
|
|
#define DIVISOR(_k) (divisors[((_k)-1)/2])
|
|
|
|
#define COMPUTE_POWER(t, k, kprev) \
|
|
do { \
|
|
if (integer) \
|
|
{ \
|
|
fmprb_neg(w, fmpcb_realref(s)); \
|
|
fmprb_set_ui(v, k); \
|
|
fmprb_pow(fmpcb_realref(t), v, w, prec); \
|
|
fmprb_zero(fmpcb_imagref(t)); \
|
|
if (len != 1) \
|
|
{ \
|
|
zeta_log_ui_from_prev(logk, k, logk, kprev, prec); \
|
|
kprev = k; \
|
|
fmprb_neg(logk, logk); \
|
|
} \
|
|
} \
|
|
else \
|
|
{ \
|
|
zeta_log_ui_from_prev(logk, k, logk, kprev, prec); \
|
|
kprev = k; \
|
|
fmprb_neg(logk, logk); \
|
|
fmprb_mul(w, logk, fmpcb_imagref(s), prec); \
|
|
fmprb_sin_cos(fmpcb_imagref(t), fmpcb_realref(t), w, prec); \
|
|
if (critical_line) \
|
|
{ \
|
|
fmprb_rsqrt_ui(w, k, prec); \
|
|
fmpcb_mul_fmprb(t, t, w, prec); \
|
|
} \
|
|
else \
|
|
{ \
|
|
fmprb_mul(w, fmpcb_realref(s), logk, prec); \
|
|
fmprb_exp(w, w, prec); \
|
|
fmpcb_mul_fmprb(t, t, w, prec); \
|
|
} \
|
|
} \
|
|
for (i = 1; i < len; i++) \
|
|
{ \
|
|
fmpcb_mul_fmprb(t + i, t + i - 1, logk, prec); \
|
|
fmpcb_div_ui(t + i, t + i, i, prec); \
|
|
} \
|
|
fmprb_neg(logk, logk); \
|
|
} while (0); \
|
|
|
|
void
|
|
zeta_powsum_one_series_sieved(fmpcb_ptr z, const fmpcb_t s, long n, long len, long prec)
|
|
{
|
|
long * divisors;
|
|
long powers_alloc;
|
|
long i, j, k, kprev, power_of_two, horner_point;
|
|
int critical_line, integer;
|
|
|
|
fmpcb_ptr powers;
|
|
fmpcb_ptr t, u, x;
|
|
fmpcb_ptr p1, p2;
|
|
fmprb_t logk, v, w;
|
|
|
|
critical_line = fmprb_is_exact(fmpcb_realref(s)) &&
|
|
(fmpr_cmp_2exp_si(fmprb_midref(fmpcb_realref(s)), -1) == 0);
|
|
|
|
integer = fmprb_is_zero(fmpcb_imagref(s)) && fmprb_is_int(fmpcb_realref(s));
|
|
|
|
divisors = flint_calloc(n / 2 + 1, sizeof(long));
|
|
powers_alloc = (n / 4 + 1) * len;
|
|
powers = _fmpcb_vec_init(powers_alloc);
|
|
|
|
for (i = 3; i <= n; i += 2)
|
|
for (j = 3 * i; j <= n; j += 2 * i)
|
|
DIVISOR(j) = i;
|
|
|
|
t = _fmpcb_vec_init(len);
|
|
u = _fmpcb_vec_init(len);
|
|
x = _fmpcb_vec_init(len);
|
|
fmprb_init(logk);
|
|
fmprb_init(v);
|
|
fmprb_init(w);
|
|
|
|
power_of_two = 1;
|
|
while (power_of_two * 2 <= n)
|
|
power_of_two *= 2;
|
|
horner_point = n / power_of_two;
|
|
|
|
_fmpcb_vec_zero(z, len);
|
|
|
|
kprev = 0;
|
|
COMPUTE_POWER(x, 2, kprev);
|
|
|
|
for (k = 1; k <= n; k += 2)
|
|
{
|
|
/* t = k^(-s) */
|
|
if (DIVISOR(k) == 0)
|
|
{
|
|
COMPUTE_POWER(t, k, kprev);
|
|
}
|
|
else
|
|
{
|
|
p1 = POWER(DIVISOR(k));
|
|
p2 = POWER(k / DIVISOR(k));
|
|
|
|
if (len == 1)
|
|
fmpcb_mul(t, p1, p2, prec);
|
|
else
|
|
_fmpcb_poly_mullow(t, p1, len, p2, len, len, prec);
|
|
}
|
|
|
|
if (k * 2 < n)
|
|
_fmpcb_vec_set(POWER(k), t, len);
|
|
|
|
_fmpcb_vec_add(u, u, t, len, prec);
|
|
|
|
while (k == horner_point && power_of_two != 1)
|
|
{
|
|
_fmpcb_poly_mullow(t, z, len, x, len, len, prec);
|
|
_fmpcb_vec_add(z, t, u, len, prec);
|
|
|
|
power_of_two /= 2;
|
|
horner_point = n / power_of_two;
|
|
horner_point -= (horner_point % 2 == 0);
|
|
}
|
|
}
|
|
|
|
_fmpcb_poly_mullow(t, z, len, x, len, len, prec);
|
|
_fmpcb_vec_add(z, t, u, len, prec);
|
|
|
|
flint_free(divisors);
|
|
_fmpcb_vec_clear(powers, powers_alloc);
|
|
_fmpcb_vec_clear(t, len);
|
|
_fmpcb_vec_clear(u, len);
|
|
_fmpcb_vec_clear(x, len);
|
|
fmprb_clear(logk);
|
|
fmprb_clear(v);
|
|
fmprb_clear(w);
|
|
}
|
|
|