arb/acb_dirichlet/conrey_log.c
Pascal fa1a85b746 [dirichlet] add conrey type to handle logs + char type
- try to handle even and odd components the same way in the dirichlet group

- switch from phi_q_odd to smaller expo = exponent of the group

  all character orders divide this number, and a character of that order exists

- use conrey logarithm to reuse log and to loop efficiently over the group

  (see the diff on l.c, only 1 log in computed instead of 2 * q)

- NOT TESTED, for the moment it just compiles, I know some errors
  (e.g. the FIXME in group_init.c : the generators have to be lifted mod q)
  this commit is just a proof of concept.
2016-09-06 14:22:07 +02:00

91 lines
2.5 KiB
C

/*=============================================================================
This file is part of ARB.
ARB is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
ARB is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with ARB; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
=============================================================================*/
/******************************************************************************
Copyright (C) 2015 Jonathan Bober
Copyright (C) 2016 Fredrik Johansson
******************************************************************************/
#include "acb_dirichlet.h"
/* todo: modular arithmetic
discrete log can be computed along exponents or using p-adic log
*/
void
acb_conrey_init(acb_conrey_t x, const acb_dirichlet_group_t G) {
x->log = flint_malloc(G->num * sizeof(ulong));
}
void
acb_conrey_one(acb_conrey_t x, const acb_dirichlet_group_t G) {
ulong k;
for (k = 0; k < G->num ; k++)
x->log[k] = 0;
x->n = 1;
}
void
acb_conrey_clear(acb_conrey_t x) {
flint_free(x->log);
}
/* TODO: use precomputations in G if present */
void
acb_conrey_log(acb_conrey_t x, const acb_dirichlet_group_t G, ulong m)
{
ulong k, pk, gk;
/* even part */
if (G->neven >= 1)
x->log[0] = (m % 4 == 3);
if (G->neven == 2)
{
ulong q_even = G->q_even;
ulong g2 = 5;
ulong m2 = (m % 4 == 3) ? n_negmod(m, q_even) : m % q_even;
x->log[1] = n_discrete_log_bsgs(m2, g2, q_even);
}
/* odd part */
for (k = G->neven; k < G->num; k++)
{
pk = n_pow(G->primes[k], G->exponents[k]);
gk = G->generators[k] % pk;
x->log[k] = n_discrete_log_bsgs(m % pk, gk, pk);
}
/* keep value m */
x->n = m;
}
int
acb_conrey_next(acb_conrey_t x, const acb_dirichlet_group_t G)
{
/* update index */
ulong k;
for (k=0; k < G->num ; k++)
{
x->n = x->n * G->generators[k];
if(x->log[k]++ < G->phi[k])
break;
x->log[k] = 0;
}
/* return last index modified */
return k;
}