arb/fmprb_poly/zeta_series.c
2013-11-12 15:25:50 +01:00

197 lines
5.4 KiB
C

/*=============================================================================
This file is part of ARB.
ARB is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
ARB is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with ARB; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
=============================================================================*/
/******************************************************************************
Copyright (C) 2013 Fredrik Johansson
******************************************************************************/
#include "fmprb_poly.h"
#include "gamma.h"
#include "zeta.h"
static __inline__ void
_fmprb_vec_printd(fmprb_srcptr vec, long len, long digits)
{
long i;
for (i = 0; i < len; i++)
fmprb_printd(vec + i, digits), printf("\n");
}
/* series of c^(d+x) */
static __inline__ void
_fmprb_poly_pow_cpx(fmprb_ptr res, const fmprb_t c, const fmprb_t d, long trunc, long prec)
{
long i;
fmprb_t logc;
fmprb_init(logc);
fmprb_log(logc, c, prec);
fmprb_mul(res + 0, logc, d, prec);
fmprb_exp(res + 0, res + 0, prec);
for (i = 1; i < trunc; i++)
{
fmprb_mul(res + i, res + i - 1, logc, prec);
fmprb_div_ui(res + i, res + i, i, prec);
}
fmprb_clear(logc);
}
void
_fmprb_poly_zeta_series(fmprb_ptr res, fmprb_srcptr h, long hlen, const fmprb_t a, int deflate, long len, long prec)
{
long i;
fmpcb_t cs, ca;
fmpcb_ptr z;
fmprb_ptr t, u;
if (fmprb_contains_nonpositive(a))
{
_fmprb_vec_indeterminate(res, len);
return;
}
hlen = FLINT_MIN(hlen, len);
z = _fmpcb_vec_init(len);
t = _fmprb_vec_init(len);
u = _fmprb_vec_init(len);
fmpcb_init(cs);
fmpcb_init(ca);
/* use reflection formula */
if (fmpr_sgn(fmprb_midref(h)) < 0 && fmprb_is_one(a))
{
/* zeta(s) = (2*pi)**s * sin(pi*s/2) / pi * gamma(1-s) * zeta(1-s) */
fmprb_t pi;
fmprb_ptr f, s1, s2, s3, s4;
fmprb_init(pi);
f = _fmprb_vec_init(2);
s1 = _fmprb_vec_init(len);
s2 = _fmprb_vec_init(len);
s3 = _fmprb_vec_init(len);
s4 = _fmprb_vec_init(len);
fmprb_const_pi(pi, prec);
/* s1 = (2*pi)**s */
fmprb_mul_2exp_si(pi, pi, 1);
_fmprb_poly_pow_cpx(s1, pi, h, len, prec);
fmprb_mul_2exp_si(pi, pi, -1);
/* s2 = sin(pi*s/2) / pi */
fmprb_mul_2exp_si(pi, pi, -1);
fmprb_mul(f, pi, h, prec);
fmprb_set(f + 1, pi);
fmprb_mul_2exp_si(pi, pi, 1);
_fmprb_poly_sin_series(s2, f, 2, len, prec);
_fmprb_vec_scalar_div(s2, s2, len, pi, prec);
/* s3 = gamma(1-s) */
fmprb_sub_ui(f, h, 1, prec);
fmprb_neg(f, f);
fmprb_set_si(f + 1, -1);
_fmprb_poly_gamma_series(s3, f, 2, len, prec);
/* s4 = zeta(1-s) */
fmprb_sub_ui(f, h, 1, prec);
fmprb_neg(f, f);
fmpcb_set_fmprb(cs, f);
fmpcb_one(ca);
zeta_series(z, cs, ca, 0, len, prec);
for (i = 0; i < len; i++)
fmprb_set(s4 + i, fmpcb_realref(z + i));
for (i = 1; i < len; i += 2)
fmprb_neg(s4 + i, s4 + i);
_fmprb_poly_mullow(u, s1, len, s2, len, len, prec);
_fmprb_poly_mullow(s1, s3, len, s4, len, len, prec);
_fmprb_poly_mullow(t, u, len, s1, len, len, prec);
/* add 1/(1-(s+t)) = 1/(1-s) + t/(1-s)^2 + ... */
if (deflate)
{
fmprb_sub_ui(u, h, 1, prec);
fmprb_neg(u, u);
fmprb_inv(u, u, prec);
for (i = 1; i < len; i++)
fmprb_mul(u + i, u + i - 1, u, prec);
_fmprb_vec_add(t, t, u, len, prec);
}
fmprb_clear(pi);
_fmprb_vec_clear(f, 2);
_fmprb_vec_clear(s1, len);
_fmprb_vec_clear(s2, len);
_fmprb_vec_clear(s3, len);
_fmprb_vec_clear(s4, len);
}
else
{
fmpcb_set_fmprb(cs, h);
fmpcb_set_fmprb(ca, a);
zeta_series(z, cs, ca, deflate, len, prec);
for (i = 0; i < len; i++)
fmprb_set(t + i, fmpcb_realref(z + i));
}
/* compose with nonconstant part */
fmprb_zero(u);
_fmprb_vec_set(u + 1, h + 1, hlen - 1);
_fmprb_poly_compose_series(res, t, len, u, hlen, len, prec);
_fmpcb_vec_clear(z, len);
_fmprb_vec_clear(t, len);
_fmprb_vec_clear(u, len);
fmpcb_init(cs);
fmpcb_init(ca);
}
void
fmprb_poly_zeta_series(fmprb_poly_t res, const fmprb_poly_t f, const fmprb_t a, int deflate, long n, long prec)
{
if (n == 0)
{
fmprb_poly_zero(res);
return;
}
fmprb_poly_fit_length(res, n);
if (f->length == 0)
{
fmprb_t t;
fmprb_init(t);
_fmprb_poly_zeta_series(res->coeffs, t, 1, a, deflate, n, prec);
fmprb_clear(t);
}
else
{
_fmprb_poly_zeta_series(res->coeffs, f->coeffs, f->length, a, deflate, n, prec);
}
_fmprb_poly_set_length(res, n);
_fmprb_poly_normalise(res);
}