mirror of
https://github.com/vale981/arb
synced 2025-03-06 01:41:39 -05:00
209 lines
5.4 KiB
C
209 lines
5.4 KiB
C
/*=============================================================================
|
|
|
|
This file is part of ARB.
|
|
|
|
ARB is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
ARB is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with ARB; if not, write to the Free Software
|
|
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
|
|
|
=============================================================================*/
|
|
/******************************************************************************
|
|
|
|
Copyright (C) 2012 Fredrik Johansson
|
|
|
|
******************************************************************************/
|
|
|
|
#include "fmpz_holonomic.h"
|
|
#include "nmod_poly_mat.h"
|
|
|
|
static void
|
|
mat_bsplit(nmod_poly_mat_t M, nmod_poly_t Q, nmod_poly_mat_t C, nmod_poly_t Cden, ulong a, ulong b)
|
|
{
|
|
long i, j, r = C->r;
|
|
|
|
if (b - a == 1)
|
|
{
|
|
for (i = 0; i < r; i++)
|
|
for (j = 0; j < r; j++)
|
|
nmod_poly_taylor_shift(M->rows[i] + j, C->rows[i] + j, a);
|
|
|
|
nmod_poly_taylor_shift(Q, Cden, a);
|
|
}
|
|
else
|
|
{
|
|
nmod_poly_mat_t M1, M2;
|
|
nmod_poly_t Q1, Q2;
|
|
ulong m = a + (b - a) / 2;
|
|
|
|
nmod_poly_mat_init(M1, r, r, Q->mod.n);
|
|
nmod_poly_mat_init(M2, r, r, Q->mod.n);
|
|
|
|
nmod_poly_init(Q1, Q->mod.n);
|
|
nmod_poly_init(Q2, Q->mod.n);
|
|
|
|
mat_bsplit(M1, Q1, C, Cden, a, m);
|
|
mat_bsplit(M2, Q2, C, Cden, m, b);
|
|
|
|
nmod_poly_mat_mul(M, M2, M1);
|
|
nmod_poly_mul(Q, Q2, Q1);
|
|
|
|
nmod_poly_clear(Q1);
|
|
nmod_poly_clear(Q2);
|
|
|
|
nmod_poly_mat_clear(M1);
|
|
nmod_poly_mat_clear(M2);
|
|
}
|
|
}
|
|
|
|
static __inline__ void
|
|
nmod_mat_swap(nmod_mat_t A, nmod_mat_t B)
|
|
{
|
|
nmod_mat_struct T = *A;
|
|
*A = *B;
|
|
*B = T;
|
|
}
|
|
|
|
static __inline__ void
|
|
nmod_mat_one(nmod_mat_t A)
|
|
{
|
|
long i, j;
|
|
|
|
for (i = 0; i < A->r; i++)
|
|
for (j = 0; j < A->c; j++)
|
|
A->rows[i][j] = (i == j);
|
|
}
|
|
|
|
|
|
void
|
|
fmpz_holonomic_forward_nmod_mat(nmod_mat_t M, mp_limb_t * Q, const fmpz_holonomic_t op, ulong start, ulong n)
|
|
{
|
|
long i, j, k, r;
|
|
nmod_poly_mat_t C;
|
|
nmod_poly_mat_t PM;
|
|
nmod_poly_t PQ, Cden;
|
|
nmod_mat_t T, U, *Y, *X;
|
|
mp_ptr ys, xs;
|
|
mp_limb_t p, q;
|
|
ulong m;
|
|
|
|
nmod_mat_one(M);
|
|
q = 1;
|
|
|
|
r = fmpz_holonomic_order(op);
|
|
p = M->mod.n;
|
|
|
|
/* number of evaluation points */
|
|
m = n_sqrt(n);
|
|
|
|
nmod_poly_mat_init(C, r, r, p);
|
|
nmod_poly_mat_init(PM, r, r, p);
|
|
nmod_poly_init(PQ, p);
|
|
nmod_poly_init(Cden, p);
|
|
nmod_mat_init(T, r, r, p);
|
|
nmod_mat_init(U, r, r, p);
|
|
|
|
/* construct companion matrix and denominator */
|
|
fmpz_poly_get_nmod_poly(Cden, op->coeffs + r);
|
|
nmod_poly_neg(Cden, Cden);
|
|
for (i = 0; i < r - 1; i++)
|
|
nmod_poly_set(C->rows[i] + i + 1, Cden);
|
|
for (i = 0; i < r; i++)
|
|
fmpz_poly_get_nmod_poly(C->rows[r - 1] + i, op->coeffs + i);
|
|
|
|
if (start != 0)
|
|
{
|
|
for (i = 0; i < r; i++)
|
|
for (j = 0; j < r; j++)
|
|
nmod_poly_taylor_shift(C->rows[i] + j, C->rows[i] + j, start);
|
|
nmod_poly_taylor_shift(Cden, Cden, start);
|
|
}
|
|
|
|
if (m > 0)
|
|
{
|
|
xs = _nmod_vec_init(m);
|
|
ys = _nmod_vec_init(m);
|
|
|
|
X = flint_malloc(sizeof(nmod_mat_t) * m);
|
|
Y = flint_malloc(sizeof(nmod_mat_t) * m);
|
|
|
|
for (k = 0; k < m; k++)
|
|
{
|
|
nmod_mat_init(X[k], r, r, p);
|
|
nmod_mat_init(Y[k], r, r, p);
|
|
}
|
|
|
|
/* compute product of companion matrices */
|
|
mat_bsplit(PM, PQ, C, Cden, 0, m);
|
|
|
|
/* points for multipoint evaluation */
|
|
for (k = 0; k < m; k++)
|
|
xs[k] = (k * m) % p;
|
|
|
|
/* multipoint evaluation of numerator */
|
|
for (i = 0; i < r; i++)
|
|
{
|
|
for (j = 0; j < r; j++)
|
|
{
|
|
nmod_poly_evaluate_nmod_vec(ys, PM->rows[i] + j, xs, m);
|
|
for (k = 0; k < m; k++)
|
|
X[k]->rows[i][j] = ys[k];
|
|
}
|
|
}
|
|
|
|
/* multipoint evaluation of denominator */
|
|
nmod_poly_evaluate_nmod_vec(ys, PQ, xs, m);
|
|
q = 1;
|
|
for (k = 0; k < m; k++)
|
|
q = n_mulmod2_preinv(q, ys[k], M->mod.n, M->mod.ninv);
|
|
|
|
/* multiply together evaluated matrices */
|
|
nmod_mat_set(M, X[0]);
|
|
for (i = 1; i < m; i++)
|
|
{
|
|
nmod_mat_mul(T, X[i], M);
|
|
nmod_mat_swap(M, T);
|
|
}
|
|
|
|
_nmod_vec_clear(xs);
|
|
_nmod_vec_clear(ys);
|
|
|
|
for (k = 0; k < m; k++)
|
|
{
|
|
nmod_mat_clear(X[k]);
|
|
nmod_mat_clear(Y[k]);
|
|
}
|
|
|
|
flint_free(X);
|
|
flint_free(Y);
|
|
}
|
|
|
|
/* fill in the rest */
|
|
for (i = m * m; i < n; i++)
|
|
{
|
|
nmod_poly_mat_evaluate_nmod(U, C, i % p);
|
|
nmod_mat_mul(T, U, M);
|
|
nmod_mat_swap(M, T);
|
|
q = n_mulmod2_preinv(q,
|
|
nmod_poly_evaluate_nmod(Cden, i % p), M->mod.n, M->mod.ninv);
|
|
}
|
|
|
|
*Q = q;
|
|
|
|
nmod_poly_mat_clear(C);
|
|
nmod_poly_mat_clear(PM);
|
|
nmod_poly_clear(PQ);
|
|
nmod_poly_clear(Cden);
|
|
nmod_mat_clear(T);
|
|
nmod_mat_clear(U);
|
|
}
|
|
|