arb/arb_poly/swinnerton_dyer_ui.c

135 lines
3.6 KiB
C

/*=============================================================================
This file is part of ARB.
ARB is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
ARB is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with ARB; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
=============================================================================*/
/******************************************************************************
Copyright (C) 2015 Fredrik Johansson
******************************************************************************/
#include "arb_poly.h"
/* Bound based on binomial theorem */
long
_arb_poly_swinnerton_dyer_ui_prec(ulong n)
{
long i;
double u, N;
N = 1UL << n;
/* u = (sum of square roots)^(2^n) */
u = 0;
for (i = 0; i < n; i++)
u += sqrt(n_nth_prime(1 + i));
u = N * log(u) * 1.44269504088897;
/* Central binomial coefficient C(N,N/2) < 2^N / sqrt(3*N/2) */
u += N - 0.5*(n-1) - 0.792481250360578; /* log(sqrt(3)) */
/* experimental heuristic: the bound is 2x too large */
return u * 0.5 + 15;
}
void
_arb_poly_swinnerton_dyer_ui(arb_ptr T, ulong n, long trunc, long prec)
{
arb_ptr square_roots, tmp1, tmp2, tmp3;
arb_t one;
long i, j, k, N;
if (n == 0)
{
arb_zero(T);
arb_one(T + 1);
return;
}
if (prec == 0)
prec = _arb_poly_swinnerton_dyer_ui_prec(n);
N = 1L << n;
trunc = FLINT_MIN(trunc, N + 1);
arb_init(one);
arb_one(one);
square_roots = _arb_vec_init(n);
tmp1 = flint_malloc((N/2 + 1) * sizeof(arb_struct));
tmp2 = flint_malloc((N/2 + 1) * sizeof(arb_struct));
tmp3 = _arb_vec_init(N);
for (i = 0; i < n; i++)
arb_sqrt_ui(square_roots + i, n_nth_prime(i + 1), prec);
/* Build linear factors */
for (i = 0; i < N; i++)
{
arb_zero(T + i);
for (j = 0; j < n; j++)
{
if ((i >> j) & 1)
arb_add(T + i, T + i, square_roots + j, prec);
else
arb_sub(T + i, T + i, square_roots + j, prec);
}
}
/* For each level... */
for (i = 0; i < n; i++)
{
long stride = 1UL << i;
for (j = 0; j < N; j += 2*stride)
{
for (k = 0; k < stride; k++)
{
tmp1[k] = T[j + k];
tmp2[k] = T[j + stride + k];
}
tmp1[stride] = *one;
tmp2[stride] = *one;
_arb_poly_mullow(tmp3, tmp1, stride + 1, tmp2, stride + 1,
FLINT_MIN(2 * stride, trunc), prec);
_arb_vec_set(T + j, tmp3, FLINT_MIN(2 * stride, trunc));
}
}
arb_one(T + N);
_arb_vec_clear(square_roots, n);
flint_free(tmp1);
flint_free(tmp2);
_arb_vec_clear(tmp3, 1UL << n);
arb_clear(one);
}
void
arb_poly_swinnerton_dyer_ui(arb_poly_t poly, ulong n, long prec)
{
long N = 1L << n;
arb_poly_fit_length(poly, N + 1);
_arb_poly_swinnerton_dyer_ui(poly->coeffs, n, N + 1, prec);
_arb_poly_set_length(poly, N + 1);
_arb_poly_normalise(poly);
}