mirror of
https://github.com/vale981/arb
synced 2025-03-05 09:21:38 -05:00
246 lines
5.4 KiB
C
246 lines
5.4 KiB
C
/*
|
|
Copyright (C) 2014-2015 Fredrik Johansson
|
|
|
|
This file is part of Arb.
|
|
|
|
Arb is free software: you can redistribute it and/or modify it under
|
|
the terms of the GNU Lesser General Public License (LGPL) as published
|
|
by the Free Software Foundation; either version 2.1 of the License, or
|
|
(at your option) any later version. See <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include "acb_hypgeom.h"
|
|
|
|
/* assumes no aliasing */
|
|
/* (+/- iz)^(-1/2-v) * z^v * exp(+/- iz) */
|
|
void
|
|
acb_hypgeom_bessel_j_asymp_prefactors_fallback(acb_t Ap, acb_t Am, acb_t C,
|
|
const acb_t nu, const acb_t z, slong prec)
|
|
{
|
|
acb_t t, u, v;
|
|
|
|
acb_init(t);
|
|
acb_init(u);
|
|
acb_init(v);
|
|
|
|
/* v = -1/2-nu */
|
|
acb_one(v);
|
|
acb_mul_2exp_si(v, v, -1);
|
|
acb_add(v, v, nu, prec);
|
|
acb_neg(v, v);
|
|
|
|
acb_mul_onei(t, z); /* t = iz */
|
|
acb_neg(u, t); /* u = -iz */
|
|
|
|
/* Ap, Am = (+/- iz)^(-1/2-nu) */
|
|
acb_pow(Ap, t, v, prec);
|
|
acb_pow(Am, u, v, prec);
|
|
|
|
/* Ap, Am *= exp(+/- iz) */
|
|
acb_exp_invexp(u, v, t, prec);
|
|
acb_mul(Ap, Ap, u, prec);
|
|
acb_mul(Am, Am, v, prec);
|
|
|
|
/* z^nu */
|
|
acb_pow(t, z, nu, prec);
|
|
acb_mul(Ap, Ap, t, prec);
|
|
acb_mul(Am, Am, t, prec);
|
|
|
|
/* (2 pi)^(-1/2) */
|
|
acb_const_pi(C, prec);
|
|
acb_mul_2exp_si(C, C, 1);
|
|
acb_rsqrt(C, C, prec);
|
|
|
|
acb_clear(t);
|
|
acb_clear(u);
|
|
acb_clear(v);
|
|
}
|
|
|
|
void
|
|
acb_hypgeom_bessel_j_asymp_prefactors(acb_t Ap, acb_t Am, acb_t C,
|
|
const acb_t nu, const acb_t z, slong prec)
|
|
{
|
|
if (arb_is_positive(acb_realref(z)))
|
|
{
|
|
acb_t t, u;
|
|
|
|
acb_init(t);
|
|
acb_init(u);
|
|
|
|
/* -(2nu+1)/4 * pi + z */
|
|
acb_mul_2exp_si(t, nu, 1);
|
|
acb_add_ui(t, t, 1, prec);
|
|
acb_mul_2exp_si(t, t, -2);
|
|
acb_neg(t, t);
|
|
acb_const_pi(u, prec);
|
|
acb_mul(t, t, u, prec);
|
|
acb_add(t, t, z, prec);
|
|
acb_mul_onei(t, t);
|
|
acb_exp_invexp(Ap, Am, t, prec);
|
|
|
|
/* (2 pi z)^(-1/2) */
|
|
acb_const_pi(C, prec);
|
|
acb_mul_2exp_si(C, C, 1);
|
|
acb_mul(C, C, z, prec);
|
|
acb_rsqrt(C, C, prec);
|
|
|
|
acb_clear(t);
|
|
acb_clear(u);
|
|
return;
|
|
}
|
|
|
|
acb_hypgeom_bessel_j_asymp_prefactors_fallback(Ap, Am, C, nu, z, prec);
|
|
}
|
|
|
|
void
|
|
acb_hypgeom_bessel_j_asymp(acb_t res, const acb_t nu, const acb_t z, slong prec)
|
|
{
|
|
acb_t A1, A2, C, U1, U2, s, t, u;
|
|
int is_real, is_imag;
|
|
|
|
acb_init(A1);
|
|
acb_init(A2);
|
|
acb_init(C);
|
|
acb_init(U1);
|
|
acb_init(U2);
|
|
acb_init(s);
|
|
acb_init(t);
|
|
acb_init(u);
|
|
|
|
is_imag = 0;
|
|
is_real = acb_is_real(nu) && acb_is_real(z)
|
|
&& (acb_is_int(nu) || arb_is_positive(acb_realref(z)));
|
|
|
|
if (!is_real && arb_is_zero(acb_realref(z)) && acb_is_int(nu))
|
|
{
|
|
acb_mul_2exp_si(t, nu, -1);
|
|
|
|
if (acb_is_int(t))
|
|
is_real = 1;
|
|
else
|
|
is_imag = 1;
|
|
}
|
|
|
|
acb_hypgeom_bessel_j_asymp_prefactors(A1, A2, C, nu, z, prec);
|
|
|
|
/* todo: if Ap ~ 2^a and Am = 2^b and U1 ~ U2 ~ 1, change precision? */
|
|
|
|
if (!acb_is_finite(A1) || !acb_is_finite(A2) || !acb_is_finite(C))
|
|
{
|
|
acb_indeterminate(res);
|
|
}
|
|
else
|
|
{
|
|
/* s = 1/2 + nu */
|
|
acb_one(s);
|
|
acb_mul_2exp_si(s, s, -1);
|
|
acb_add(s, s, nu, prec);
|
|
|
|
/* t = 1 + 2 nu */
|
|
acb_mul_2exp_si(t, nu, 1);
|
|
acb_add_ui(t, t, 1, prec);
|
|
|
|
acb_mul_onei(u, z);
|
|
acb_mul_2exp_si(u, u, 1);
|
|
acb_hypgeom_u_asymp(U2, s, t, u, -1, prec);
|
|
acb_neg(u, u);
|
|
acb_hypgeom_u_asymp(U1, s, t, u, -1, prec);
|
|
|
|
acb_mul(res, A1, U1, prec);
|
|
acb_addmul(res, A2, U2, prec);
|
|
acb_mul(res, res, C, prec);
|
|
|
|
if (is_real)
|
|
arb_zero(acb_imagref(res));
|
|
if (is_imag)
|
|
arb_zero(acb_realref(res));
|
|
}
|
|
|
|
acb_clear(A1);
|
|
acb_clear(A2);
|
|
acb_clear(C);
|
|
acb_clear(U1);
|
|
acb_clear(U2);
|
|
acb_clear(s);
|
|
acb_clear(t);
|
|
acb_clear(u);
|
|
}
|
|
|
|
void
|
|
acb_hypgeom_bessel_j_0f1(acb_t res, const acb_t nu, const acb_t z, slong prec)
|
|
{
|
|
acb_struct b[2];
|
|
acb_t w, c, t;
|
|
|
|
if (acb_is_int(nu) && arb_is_negative(acb_realref(nu)))
|
|
{
|
|
acb_init(t);
|
|
acb_neg(t, nu);
|
|
|
|
acb_hypgeom_bessel_j_0f1(res, t, z, prec);
|
|
|
|
acb_mul_2exp_si(t, t, -1);
|
|
if (!acb_is_int(t))
|
|
acb_neg(res, res);
|
|
|
|
acb_clear(t);
|
|
return;
|
|
}
|
|
|
|
acb_init(b + 0);
|
|
acb_init(b + 1);
|
|
acb_init(w);
|
|
acb_init(c);
|
|
acb_init(t);
|
|
|
|
acb_add_ui(b + 0, nu, 1, prec);
|
|
acb_one(b + 1);
|
|
|
|
/* (z/2)^nu / gamma(nu+1) */
|
|
acb_mul_2exp_si(c, z, -1);
|
|
acb_pow(c, c, nu, prec);
|
|
acb_rgamma(t, b + 0, prec);
|
|
acb_mul(c, t, c, prec);
|
|
|
|
/* -z^2/4 */
|
|
acb_mul(w, z, z, prec);
|
|
acb_mul_2exp_si(w, w, -2);
|
|
acb_neg(w, w);
|
|
|
|
acb_hypgeom_pfq_direct(t, NULL, 0, b, 2, w, -1, prec);
|
|
|
|
acb_mul(res, t, c, prec);
|
|
|
|
acb_clear(b + 0);
|
|
acb_clear(b + 1);
|
|
acb_clear(w);
|
|
acb_clear(c);
|
|
acb_clear(t);
|
|
}
|
|
|
|
/*
|
|
|
|
The asymptotic series can be used roughly when
|
|
|
|
[(1+log(2))/log(2) = 2.44269504088896] * z > p
|
|
|
|
We are a bit more conservative and use the factor 2.
|
|
*/
|
|
|
|
void
|
|
acb_hypgeom_bessel_j(acb_t res, const acb_t nu, const acb_t z, slong prec)
|
|
{
|
|
mag_t zmag;
|
|
|
|
mag_init(zmag);
|
|
acb_get_mag(zmag, z);
|
|
|
|
if (mag_cmp_2exp_si(zmag, 4) < 0 ||
|
|
(mag_cmp_2exp_si(zmag, 64) < 0 && 2 * mag_get_d(zmag) < prec))
|
|
acb_hypgeom_bessel_j_0f1(res, nu, z, prec);
|
|
else
|
|
acb_hypgeom_bessel_j_asymp(res, nu, z, prec);
|
|
|
|
mag_clear(zmag);
|
|
}
|
|
|