arb/arb_poly/rgamma_series.c
2015-11-10 13:41:43 +00:00

214 lines
6.4 KiB
C

/*=============================================================================
This file is part of ARB.
ARB is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
ARB is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with ARB; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
=============================================================================*/
/******************************************************************************
Copyright (C) 2013 Fredrik Johansson
******************************************************************************/
#include "arb_poly.h"
slong arf_get_si(const arf_t x, arf_rnd_t rnd);
void _arb_poly_lgamma_series_at_one(arb_ptr u, slong len, slong prec);
void arb_gamma_stirling_choose_param(int * reflect, slong * r, slong * n,
const arb_t x, int use_reflect, int digamma, slong prec);
void _arb_poly_gamma_stirling_eval(arb_ptr res, const arb_t z, slong n, slong num, slong prec);
void
_arb_poly_rgamma_series(arb_ptr res, arb_srcptr h, slong hlen, slong len, slong prec)
{
int reflect, isint;
slong i, rflen, r, n, wp;
arb_ptr t, u, v;
arb_struct f[2];
hlen = FLINT_MIN(hlen, len);
if (hlen == 1)
{
arb_rgamma(res, h, prec);
_arb_vec_zero(res + 1, len - 1);
return;
}
isint = arb_is_int(h);
if (len <= 2 && isint && arf_sgn(arb_midref(h)) <= 0)
{
int even = arf_is_int_2exp_si(arb_midref(h), 1);
/* use res[0] as tmp to allow aliasing */
arb_sub_ui(res, h, 1, prec);
arb_neg(res, res);
arb_gamma(res, res, prec);
arb_mul(res + 1, h + 1, res, prec);
if (!even)
arb_neg(res + 1, res + 1);
arb_zero(res);
return;
}
wp = prec + FLINT_BIT_COUNT(prec);
t = _arb_vec_init(len);
u = _arb_vec_init(len);
v = _arb_vec_init(len);
arb_init(f);
arb_init(f + 1);
/* use zeta values at small integers */
if (isint && (arf_cmpabs_ui(arb_midref(h), prec / 2) < 0))
{
r = arf_get_si(arb_midref(h), ARF_RND_DOWN);
_arb_poly_lgamma_series_at_one(u, len, wp);
_arb_vec_neg(u, u, len);
_arb_poly_exp_series(t, u, len, len, wp);
if (r == 1)
{
_arb_vec_swap(v, t, len);
}
else if (r <= 0)
{
arb_set(f, h);
arb_one(f + 1);
rflen = FLINT_MIN(len, 2 - r);
_arb_poly_rising_ui_series(u, f, FLINT_MIN(2, len), 1 - r, rflen, wp);
_arb_poly_mullow(v, t, len, u, rflen, len, wp);
}
else
{
arb_one(f);
arb_one(f + 1);
rflen = FLINT_MIN(len, r);
_arb_poly_rising_ui_series(v, f, FLINT_MIN(2, len), r - 1, rflen, wp);
/* TODO: use div_series? */
_arb_poly_inv_series(u, v, rflen, len, wp);
_arb_poly_mullow(v, t, len, u, len, len, wp);
}
}
else
{
/* otherwise use Stirling series */
arb_gamma_stirling_choose_param(&reflect, &r, &n, h, 1, 0, wp);
/* rgamma(h) = (gamma(1-h+r) sin(pi h)) / (rf(1-h, r) * pi), h = h0 + t*/
if (reflect)
{
/* u = gamma(r+1-h) */
arb_sub_ui(f, h, r + 1, wp);
arb_neg(f, f);
_arb_poly_gamma_stirling_eval(t, f, n, len, wp);
_arb_poly_exp_series(u, t, len, len, wp);
for (i = 1; i < len; i += 2)
arb_neg(u + i, u + i);
/* v = sin(pi x) */
arb_set(f, h);
arb_one(f + 1);
_arb_poly_sin_pi_series(v, f, 2, len, wp);
_arb_poly_mullow(t, u, len, v, len, len, wp);
/* rf(1-h,r) * pi */
if (r == 0)
{
arb_const_pi(u, wp);
_arb_vec_scalar_div(v, t, len, u, wp);
}
else
{
arb_sub_ui(f, h, 1, wp);
arb_neg(f, f);
arb_set_si(f + 1, -1);
rflen = FLINT_MIN(len, r + 1);
_arb_poly_rising_ui_series(v, f, FLINT_MIN(2, len), r, rflen, wp);
arb_const_pi(u, wp);
_arb_vec_scalar_mul(v, v, rflen, u, wp);
/* divide by rising factorial */
/* TODO: might better to use div_series, when it has a good basecase */
_arb_poly_inv_series(u, v, rflen, len, wp);
_arb_poly_mullow(v, t, len, u, len, len, wp);
}
}
else
{
/* rgamma(h) = rgamma(h+r) rf(h,r) */
if (r == 0)
{
arb_add_ui(f, h, r, wp);
_arb_poly_gamma_stirling_eval(t, f, n, len, wp);
_arb_vec_neg(t, t, len);
_arb_poly_exp_series(v, t, len, len, wp);
}
else
{
arb_set(f, h);
arb_one(f + 1);
rflen = FLINT_MIN(len, r + 1);
_arb_poly_rising_ui_series(t, f, FLINT_MIN(2, len), r, rflen, wp);
arb_add_ui(f, h, r, wp);
_arb_poly_gamma_stirling_eval(v, f, n, len, wp);
_arb_vec_neg(v, v, len);
_arb_poly_exp_series(u, v, len, len, wp);
_arb_poly_mullow(v, u, len, t, rflen, len, wp);
}
}
}
/* compose with nonconstant part */
arb_zero(t);
_arb_vec_set(t + 1, h + 1, hlen - 1);
_arb_poly_compose_series(res, v, len, t, hlen, len, prec);
arb_clear(f);
arb_clear(f + 1);
_arb_vec_clear(t, len);
_arb_vec_clear(u, len);
_arb_vec_clear(v, len);
}
void
arb_poly_rgamma_series(arb_poly_t res, const arb_poly_t f, slong n, slong prec)
{
if (f->length == 0 || n == 0)
{
arb_poly_zero(res);
}
else
{
arb_poly_fit_length(res, n);
_arb_poly_rgamma_series(res->coeffs, f->coeffs, f->length, n, prec);
_arb_poly_set_length(res, n);
_arb_poly_normalise(res);
}
}