arb/acb_hypgeom/test/t-gamma_upper.c

230 lines
7 KiB
C

/*=============================================================================
This file is part of ARB.
ARB is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
ARB is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with ARB; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
=============================================================================*/
/******************************************************************************
Copyright (C) 2014 Fredrik Johansson
******************************************************************************/
#include "acb_hypgeom.h"
int main()
{
slong iter;
flint_rand_t state;
flint_printf("gamma_upper....");
fflush(stdout);
flint_randinit(state);
/* special accuracy test -- see nemo #38 */
for (iter = 0; iter < 1000; iter++)
{
acb_t a, z, res;
slong prec, goal;
int regularized;
acb_init(a);
acb_init(z);
acb_init(res);
acb_set_si(a, n_randint(state, 100) - 50);
do {
acb_set_si(z, n_randint(state, 100) - 50);
} while (acb_is_zero(z));
regularized = n_randint(state, 3);
goal = 2 + n_randint(state, 4000);
for (prec = 2 + n_randint(state, 1000); ; prec *= 2)
{
acb_hypgeom_gamma_upper(res, a, z, regularized, prec);
if (acb_rel_accuracy_bits(res) > goal)
break;
if (prec > 10000)
{
printf("FAIL (convergence)\n");
flint_printf("regularized = %d\n\n", regularized);
flint_printf("a = "); acb_printd(a, 30); flint_printf("\n\n");
flint_printf("z = "); acb_printd(z, 30); flint_printf("\n\n");
flint_printf("res = "); acb_printd(res, 30); flint_printf("\n\n");
abort();
}
}
acb_clear(a);
acb_clear(z);
acb_clear(res);
}
for (iter = 0; iter < 2000; iter++)
{
acb_t a0, a1, b, z, w0, w1, t, u;
slong prec0, prec1;
int regularized;
acb_init(a0);
acb_init(a1);
acb_init(b);
acb_init(z);
acb_init(w0);
acb_init(w1);
acb_init(t);
acb_init(u);
regularized = n_randint(state, 3);
prec0 = 2 + n_randint(state, 1000);
prec1 = 2 + n_randint(state, 1000);
acb_randtest_param(a0, state, 1 + n_randint(state, 1000), 1 + n_randint(state, 100));
acb_randtest(z, state, 1 + n_randint(state, 1000), 1 + n_randint(state, 100));
acb_randtest(w0, state, 1 + n_randint(state, 1000), 1 + n_randint(state, 100));
acb_randtest(w1, state, 1 + n_randint(state, 1000), 1 + n_randint(state, 100));
acb_add_ui(a1, a0, 1, prec0);
switch (n_randint(state, 4))
{
case 0:
acb_hypgeom_gamma_upper_asymp(w0, a0, z, regularized, prec0);
break;
case 1:
acb_hypgeom_gamma_upper_1f1a(w0, a0, z, regularized, prec0);
break;
case 2:
acb_hypgeom_gamma_upper_1f1b(w0, a0, z, regularized, prec0);
break;
default:
acb_hypgeom_gamma_upper(w0, a0, z, regularized, prec0);
}
switch (n_randint(state, 4))
{
case 0:
acb_hypgeom_gamma_upper_asymp(w1, a0, z, regularized, prec1);
break;
case 1:
acb_hypgeom_gamma_upper_1f1a(w1, a0, z, regularized, prec1);
break;
case 2:
acb_hypgeom_gamma_upper_1f1b(w1, a0, z, regularized, prec1);
break;
default:
acb_hypgeom_gamma_upper(w1, a0, z, regularized, prec1);
}
if (!acb_overlaps(w0, w1))
{
flint_printf("FAIL: consistency\n\n");
flint_printf("a0 = "); acb_printd(a0, 30); flint_printf("\n\n");
flint_printf("z = "); acb_printd(z, 30); flint_printf("\n\n");
flint_printf("w0 = "); acb_printd(w0, 30); flint_printf("\n\n");
flint_printf("w1 = "); acb_printd(w1, 30); flint_printf("\n\n");
abort();
}
switch (n_randint(state, 4))
{
case 0:
acb_hypgeom_gamma_upper_asymp(w1, a1, z, regularized, prec1);
break;
case 1:
acb_hypgeom_gamma_upper_1f1a(w1, a1, z, regularized, prec1);
break;
case 2:
acb_hypgeom_gamma_upper_1f1b(w1, a1, z, regularized, prec1);
break;
default:
acb_hypgeom_gamma_upper(w1, a1, z, regularized, prec1);
}
if (regularized == 2)
{
acb_one(t);
acb_neg(u, z);
acb_exp(u, u, prec0);
acb_mul(t, t, u, prec0);
acb_mul(b, w1, z, prec0);
acb_addmul(t, a0, w0, prec0);
acb_sub(t, t, b, prec0);
}
else if (regularized == 1)
{
/* Q(a,z) + exp(-z) z^a / Gamma(a+1) - Q(a+1,z) = 0 */
acb_pow(t, z, a0, prec0);
acb_rgamma(u, a1, prec0);
acb_mul(t, t, u, prec0);
acb_neg(u, z);
acb_exp(u, u, prec0);
acb_mul(t, t, u, prec0);
acb_add(t, t, w0, prec0);
acb_sub(t, t, w1, prec0);
}
else
{
/* a Gamma(a,z) + exp(-z) z^a - Gamma(a+1,z) = 0 */
acb_pow(t, z, a0, prec0);
acb_neg(u, z);
acb_exp(u, u, prec0);
acb_mul(t, t, u, prec0);
acb_addmul(t, a0, w0, prec0);
acb_sub(t, t, w1, prec0);
}
if (!acb_contains_zero(t))
{
flint_printf("FAIL: contiguous relation\n\n");
flint_printf("regularized = %d\n\n", regularized);
flint_printf("a0 = "); acb_printd(a0, 30); flint_printf("\n\n");
flint_printf("z = "); acb_printd(z, 30); flint_printf("\n\n");
flint_printf("w0 = "); acb_printd(w0, 30); flint_printf("\n\n");
flint_printf("w1 = "); acb_printd(w1, 30); flint_printf("\n\n");
flint_printf("t = "); acb_printd(t, 30); flint_printf("\n\n");
abort();
}
acb_clear(a0);
acb_clear(a1);
acb_clear(b);
acb_clear(z);
acb_clear(w0);
acb_clear(w1);
acb_clear(t);
acb_clear(u);
}
flint_randclear(state);
flint_cleanup();
flint_printf("PASS\n");
return EXIT_SUCCESS;
}