arb/arb_poly/sin_cos_series_tangent.c
2015-11-05 17:59:29 +00:00

139 lines
3.7 KiB
C

/*=============================================================================
This file is part of ARB.
ARB is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
ARB is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with ARB; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
=============================================================================*/
/******************************************************************************
Copyright (C) 2013 Fredrik Johansson
******************************************************************************/
#include "arb_poly.h"
void
_arb_poly_sin_cos_series_tangent(arb_ptr s, arb_ptr c,
const arb_srcptr h, slong hlen, slong len, slong prec, int times_pi)
{
arb_ptr t, u, v;
arb_t s0, c0;
hlen = FLINT_MIN(hlen, len);
if (hlen == 1)
{
if (times_pi)
arb_sin_cos_pi(s, c, h, prec);
else
arb_sin_cos(s, c, h, prec);
_arb_vec_zero(s + 1, len - 1);
_arb_vec_zero(c + 1, len - 1);
return;
}
/*
sin(x) = 2*tan(x/2)/(1+tan(x/2)^2)
cos(x) = (1-tan(x/2)^2)/(1+tan(x/2)^2)
*/
arb_init(s0);
arb_init(c0);
t = _arb_vec_init(3 * len);
u = t + len;
v = u + len;
/* sin, cos of h0 */
if (times_pi)
arb_sin_cos_pi(s0, c0, h, prec);
else
arb_sin_cos(s0, c0, h, prec);
/* t = tan((h-h0)/2) */
arb_zero(u);
_arb_vec_scalar_mul_2exp_si(u + 1, h + 1, hlen - 1, -1);
if (times_pi)
{
arb_const_pi(t, prec);
_arb_vec_scalar_mul(u + 1, u + 1, hlen - 1, t, prec);
}
_arb_poly_tan_series(t, u, hlen, len, prec);
/* v = 1 + t^2 */
_arb_poly_mullow(v, t, len, t, len, len, prec);
arb_add_ui(v, v, 1, prec);
/* u = 1/(1+t^2) */
_arb_poly_inv_series(u, v, len, len, prec);
/* sine */
_arb_poly_mullow(s, t, len, u, len, len, prec);
_arb_vec_scalar_mul_2exp_si(s, s, len, 1);
/* cosine */
arb_sub_ui(v, v, 2, prec);
_arb_vec_neg(v, v, len);
_arb_poly_mullow(c, v, len, u, len, len, prec);
/* sin(h0 + h1) = cos(h0) sin(h1) + sin(h0) cos(h1)
cos(h0 + h1) = cos(h0) cos(h1) - sin(h0) sin(h1) */
if (!arb_is_zero(s0))
{
_arb_vec_scalar_mul(t, s, len, c0, prec);
_arb_vec_scalar_mul(u, c, len, s0, prec);
_arb_vec_scalar_mul(v, s, len, s0, prec);
_arb_vec_add(s, t, u, len, prec);
_arb_vec_scalar_mul(t, c, len, c0, prec);
_arb_vec_sub(c, t, v, len, prec);
}
_arb_vec_clear(t, 3 * len);
arb_clear(s0);
arb_clear(c0);
}
void
arb_poly_sin_cos_series_tangent(arb_poly_t s, arb_poly_t c,
const arb_poly_t h, slong n, slong prec, int times_pi)
{
slong hlen = h->length;
if (n == 0)
{
arb_poly_zero(s);
arb_poly_zero(c);
return;
}
if (hlen == 0)
{
arb_poly_zero(s);
arb_poly_one(c);
return;
}
arb_poly_fit_length(s, n);
arb_poly_fit_length(c, n);
_arb_poly_sin_cos_series_tangent(s->coeffs, c->coeffs,
h->coeffs, hlen, n, prec, times_pi);
_arb_poly_set_length(s, n);
_arb_poly_normalise(s);
_arb_poly_set_length(c, n);
_arb_poly_normalise(c);
}