mirror of
https://github.com/vale981/arb
synced 2025-03-06 01:41:39 -05:00
106 lines
3 KiB
C
106 lines
3 KiB
C
/*=============================================================================
|
|
|
|
This file is part of ARB.
|
|
|
|
ARB is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
ARB is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with ARB; if not, write to the Free Software
|
|
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
|
|
|
=============================================================================*/
|
|
/******************************************************************************
|
|
|
|
Copyright (C) 2013 Fredrik Johansson
|
|
|
|
******************************************************************************/
|
|
|
|
#include "acb_poly.h"
|
|
|
|
#define CUTOFF 5
|
|
|
|
void
|
|
_acb_poly_revert_series_newton(acb_ptr Qinv, acb_srcptr Q, long Qlen, long n, long prec)
|
|
{
|
|
long i, k, a[FLINT_BITS];
|
|
acb_ptr T, U, V;
|
|
|
|
if (n <= 2)
|
|
{
|
|
if (n >= 1)
|
|
acb_zero(Qinv);
|
|
if (n == 2)
|
|
acb_inv(Qinv + 1, Q + 1, prec);
|
|
return;
|
|
}
|
|
|
|
T = _acb_vec_init(n);
|
|
U = _acb_vec_init(n);
|
|
V = _acb_vec_init(n);
|
|
|
|
k = n;
|
|
for (i = 1; (1L << i) < k; i++);
|
|
a[i = 0] = k;
|
|
while (k >= CUTOFF)
|
|
a[++i] = (k = (k + 1) / 2);
|
|
|
|
_acb_poly_revert_series_lagrange(Qinv, Q, Qlen, k, prec);
|
|
_acb_vec_zero(Qinv + k, n - k);
|
|
|
|
for (i--; i >= 0; i--)
|
|
{
|
|
k = a[i];
|
|
_acb_poly_compose_series(T, Q, FLINT_MIN(Qlen, k), Qinv, k, k, prec);
|
|
_acb_poly_derivative(U, T, k, prec); acb_zero(U + k - 1);
|
|
acb_zero(T + 1);
|
|
_acb_poly_div_series(V, T, k, U, k, k, prec);
|
|
_acb_poly_derivative(T, Qinv, k, prec);
|
|
_acb_poly_mullow(U, V, k, T, k, k, prec);
|
|
_acb_vec_sub(Qinv, Qinv, U, k, prec);
|
|
}
|
|
|
|
_acb_vec_clear(T, n);
|
|
_acb_vec_clear(U, n);
|
|
_acb_vec_clear(V, n);
|
|
}
|
|
|
|
void
|
|
acb_poly_revert_series_newton(acb_poly_t Qinv,
|
|
const acb_poly_t Q, long n, long prec)
|
|
{
|
|
long Qlen = Q->length;
|
|
|
|
if (Qlen < 2 || !acb_is_zero(Q->coeffs)
|
|
|| acb_contains_zero(Q->coeffs + 1))
|
|
{
|
|
printf("Exception (acb_poly_revert_series_newton). Input must \n"
|
|
"have zero constant term and nonzero coefficient of x^1.\n");
|
|
abort();
|
|
}
|
|
|
|
if (Qinv != Q)
|
|
{
|
|
acb_poly_fit_length(Qinv, n);
|
|
_acb_poly_revert_series_newton(Qinv->coeffs, Q->coeffs, Qlen, n, prec);
|
|
}
|
|
else
|
|
{
|
|
acb_poly_t t;
|
|
acb_poly_init2(t, n);
|
|
_acb_poly_revert_series_newton(t->coeffs, Q->coeffs, Qlen, n, prec);
|
|
acb_poly_swap(Qinv, t);
|
|
acb_poly_clear(t);
|
|
}
|
|
|
|
_acb_poly_set_length(Qinv, n);
|
|
_acb_poly_normalise(Qinv);
|
|
}
|
|
|