arb/gamma/stirling_eval_fmpcb.c
Fredrik Johansson d6ef6f70b2 some renaming
2013-07-30 15:21:17 +02:00

119 lines
3.4 KiB
C

/*=============================================================================
This file is part of ARB.
ARB is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
ARB is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with ARB; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
=============================================================================*/
/******************************************************************************
Copyright (C) 2012 Fredrik Johansson
******************************************************************************/
#include <math.h>
#include "gamma.h"
#include "bernoulli.h"
void
gamma_stirling_eval_fmpcb(fmpcb_t s, const fmpcb_t z, long nterms, int digamma, long prec)
{
fmpcb_t t, logz, zinv, zinv2;
fmprb_t b;
fmpr_t err;
long k, term_prec;
double z_mag, term_mag;
fmpcb_init(t);
fmpcb_init(logz);
fmpcb_init(zinv);
fmpcb_init(zinv2);
fmprb_init(b);
fmpcb_log(logz, z, prec);
fmpcb_inv(zinv, z, prec);
nterms = FLINT_MAX(nterms, 1);
fmpcb_zero(s);
if (nterms > 1)
{
fmpcb_mul(zinv2, zinv, zinv, prec);
z_mag = fmpr_get_d(fmprb_midref(fmpcb_realref(logz)), FMPR_RND_UP) * 1.44269504088896;
for (k = nterms - 1; k >= 1; k--)
{
term_mag = bernoulli_bound_2exp_si(2 * k);
term_mag -= (2 * k - 1) * z_mag;
term_prec = prec + term_mag;
term_prec = FLINT_MIN(term_prec, prec);
term_prec = FLINT_MAX(term_prec, 10);
gamma_stirling_coeff(b, k, digamma, term_prec);
if (prec > 2000)
{
fmpcb_set_round(t, zinv2, term_prec);
fmpcb_mul(s, s, t, term_prec);
}
else
fmpcb_mul(s, s, zinv2, term_prec);
fmprb_add(fmpcb_realref(s), fmpcb_realref(s), b, term_prec);
}
if (digamma)
fmpcb_mul(s, s, zinv2, prec);
else
fmpcb_mul(s, s, zinv, prec);
}
/* remainder bound */
fmpr_init(err);
gamma_stirling_bound_fmpcb(err, z, digamma ? 1 : 0, 1, nterms);
fmprb_add_error_fmpr(fmpcb_realref(s), err);
fmprb_add_error_fmpr(fmpcb_imagref(s), err);
fmpr_clear(err);
if (digamma)
{
fmpcb_neg(s, s);
fmpcb_mul_2exp_si(zinv, zinv, -1);
fmpcb_sub(s, s, zinv, prec);
fmpcb_add(s, s, logz, prec);
}
else
{
/* (z-0.5)*log(z) - z + log(2*pi)/2 */
fmprb_one(b);
fmprb_mul_2exp_si(b, b, -1);
fmprb_set(fmpcb_imagref(t), fmpcb_imagref(z));
fmprb_sub(fmpcb_realref(t), fmpcb_realref(z), b, prec);
fmpcb_mul(t, logz, t, prec);
fmpcb_add(s, s, t, prec);
fmpcb_sub(s, s, z, prec);
fmprb_const_log_sqrt2pi(b, prec);
fmprb_add(fmpcb_realref(s), fmpcb_realref(s), b, prec);
}
fmpcb_clear(t);
fmpcb_clear(logz);
fmpcb_clear(zinv);
fmpcb_clear(zinv2);
fmprb_clear(b);
}