arb/doc/source/acb_hypgeom.rst
2015-06-10 17:39:24 +02:00

579 lines
21 KiB
ReStructuredText

.. _acb-hypgeom:
**acb_hypgeom.h** -- hypergeometric functions in the complex numbers
==================================================================================
The generalized hypergeometric function is formally defined by
.. math ::
{}_pF_q(a_1,\ldots,a_p;b_1,\ldots,b_q;z) =
\sum_{k=0}^\infty \frac{(a_1)_k\dots(a_p)_k}{(b_1)_k\dots(b_q)_k} \frac {z^k} {k!}.
It can be interpreted using analytic continuation or regularization
when the sum does not converge.
In a looser sense, we understand "hypergeometric functions" to be
linear combinations of generalized hypergeometric functions
with prefactors that are products of exponentials, powers, and gamma functions.
Convergent series
-------------------------------------------------------------------------------
In this section, we define
.. math ::
T(k) = \frac{\prod_{i=0}^{p-1} (a_i)_k}{\prod_{i=0}^{q-1} (b_i)_k} z^k
and
.. math ::
{}_pH_{q}(a_0,\ldots,a_{p-1}; b_0 \ldots b_{q-1}; z) = {}_{p+1}F_{q}(a_0,\ldots,a_{p-1},1; b_0 \ldots b_{q-1}; z) = \sum_{k=0}^{\infty} T(k)
For the conventional generalized hypergeometric function
`{}_pF_{q}`, compute `{}_pH_{q+1}` with the explicit parameter `b_q = 1`,
or remove a 1 from the `a_i` parameters if there is one.
.. function:: void acb_hypgeom_pfq_bound_factor(mag_t C, acb_srcptr a, long p, acb_srcptr b, long q, const acb_t z, ulong n)
Computes a factor *C* such that
.. math ::
\left|\sum_{k=n}^{\infty} T(k)\right| \le C |T(n)|.
We check that `\operatorname{Re}(b+n) > 0` for all lower
parameters *b*. If this does not hold, *C* is set to infinity.
Otherwise, we cancel out pairs of parameters
`a` and `b` against each other. We have
.. math ::
\left|\frac{a+k}{b+k}\right| = \left|1 + \frac{a-b}{b+k}\right| \le 1 + \frac{|a-b|}{|b+n|}
and
.. math ::
\left|\frac{1}{b+k}\right| \le \frac{1}{|b+n|}
for all `k \ge n`. This gives us a constant *D* such that
`T(k+1) \le D T(k)` for all `k \ge n`.
If `D \ge 1`, we set *C* to infinity. Otherwise, we take
`C = \sum_{k=0}^{\infty} D^k = (1-D)^{-1}`.
As currently implemented, the bound becomes infinite when `n` is
too small, even if the series converges.
.. function:: long acb_hypgeom_pfq_choose_n(acb_srcptr a, long p, acb_srcptr b, long q, const acb_t z, long prec)
Heuristically attempts to choose a number of terms *n* to
sum of a hypergeometric series at a working precision of *prec* bits.
Uses double precision arithmetic internally. As currently implemented,
it can fail to produce a good result if the parameters are extremely
large or extremely close to nonpositive integers.
Numerical cancellation is assumed to be significant, so truncation
is done when the current term is *prec* bits
smaller than the largest encountered term.
This function will also attempt to pick a reasonable
truncation point for divergent series.
.. function:: void acb_hypgeom_pfq_sum_forward(acb_t s, acb_t t, acb_srcptr a, long p, acb_srcptr b, long q, const acb_t z, long n, long prec)
.. function:: void acb_hypgeom_pfq_sum_rs(acb_t s, acb_t t, acb_srcptr a, long p, acb_srcptr b, long q, const acb_t z, long n, long prec)
.. function:: void acb_hypgeom_pfq_sum(acb_t s, acb_t t, acb_srcptr a, long p, acb_srcptr b, long q, const acb_t z, long n, long prec)
Computes `s = \sum_{k=0}^{n-1} T(k)` and `t = T(n)`.
Does not allow aliasing between input and output variables.
We require `n \ge 0`.
The *forward* version computes the sum using forward
recurrence.
The *rs* version computes the sum in reverse order
using rectangular splitting. It only computes a
magnitude bound for the value of *t*.
The default version automatically chooses an algorithm
depending on the inputs.
.. function:: void acb_hypgeom_pfq_direct(acb_t res, acb_srcptr a, long p, acb_srcptr b, long q, const acb_t z, long n, long prec)
Computes
.. math ::
{}_pH_{q}(z)
= \sum_{k=0}^{\infty} T(k)
= \sum_{k=0}^{n-1} T(k) + \varepsilon
directly from the defining series, including a rigorous bound for
the truncation error `\varepsilon` in the output.
If `n < 0`, this function chooses a number of terms automatically
using :func:`acb_hypgeom_pfq_choose_n`.
.. function:: void acb_hypgeom_pfq_series_direct(acb_poly_t res, const acb_poly_struct * a, long p, const acb_poly_struct * b, long q, const acb_poly_t z, int regularized, long n, long len, long prec)
Computes `{}_pH_{q}(z)` directly using the defining series, given
parameters and argument that are power series.
The result is a power series of length *len*.
An error bound is computed automatically as a function of the number
of terms *n*. If `n < 0`, the number of terms is chosen
automatically.
If *regularized* is set, the regularized hypergeometric function
is computed instead.
Asymptotic series
-------------------------------------------------------------------------------
Let `U(a,b,z)` denote the confluent hypergeometric function of the second
kind with the principal branch cut, and
let `U^{*} = z^a U(a,b,z)`.
For all `z \ne 0` and `b \notin \mathbb{Z}` (but valid for all `b` as a limit),
we have (DLMF 13.2.42)
.. math ::
U(a,b,z)
= \frac{\Gamma(1-b)}{\Gamma(a-b+1)} M(a,b,z)
+ \frac{\Gamma(b-1)}{\Gamma(a)} z^{1-b} M(a-b+1,2-b,z).
Moreover, for all `z \ne 0` we have
.. math ::
\frac{{}_1F_1(a,b,z)}{\Gamma(b)}
= \frac{(-z)^{-a}}{\Gamma(b-a)} U^{*}(a,b,z)
+ \frac{z^{a-b} e^z}{\Gamma(a)} U^{*}(b-a,b,-z)
which is equivalent to DLMF 13.2.41 (but simpler in form).
We have the asymptotic expansion
.. math ::
U^{*}(a,b,z) \sim {}_2F_0(a, a-b+1, -1/z)
where `{}_2F_0(a,b,z)` denotes a formal hypergeometric series, i.e.
.. math ::
U^{*}(a,b,z) = \sum_{k=0}^{n-1} \frac{(a)_k (a-b+1)_k}{k! (-z)^k} + \varepsilon_n(z).
The error term `\varepsilon_n(z)` is bounded according to DLMF 13.7.
A case distinction is made depending on whether `z` lies in one
of three regions which we index by `R`.
Our formula for the error bound increases with the value of `R`, so we
can always choose the larger out of two indices if `z` lies in
the union of two regions.
Let `r = |b-2a|`.
If `\operatorname{Re}(z) \ge r`, set `R = 1`.
Otherwise, if `\operatorname{Im}(z) \ge r` or `\operatorname{Re}(z) \ge 0 \land |z| \ge r`, set `R = 2`.
Otherwise, if `|z| \ge 2r`, set `R = 3`.
Otherwise, the bound is infinite.
If the bound is finite, we have
.. math ::
|\varepsilon_n(z)| \le 2 \alpha C_n \left|\frac{(a)_n (a-b+1)_n}{n! z^n} \right| \exp(2 \alpha \rho C_1 / |z|)
in terms of the following auxiliary quantities
.. math ::
\sigma = |(b-2a)/z|
C_n = \begin{cases}
1 & \text{if } R = 1 \\
\chi(n) & \text{if } R = 2 \\
(\chi(n) + \rho \nu^2 n) \nu^n & \text{if } R = 3
\end{cases}
\nu = \left(\tfrac{1}{2} + \tfrac{1}{2}\sqrt{1-4\sigma^2}\right)^{-1/2} \le 1 + 2 \sigma^2
\chi(n) = \sqrt{\pi} \Gamma(\tfrac{1}{2}n+1) / \Gamma(\tfrac{1}{2} n + \tfrac{1}{2})
\sigma' = \begin{cases}
\sigma & \text{if } R \ne 3 \\
\nu \sigma & \text{if } R = 3
\end{cases}
\alpha = (1 - \sigma')^{-1}
\rho = \tfrac{1}{2} |2a^2-2ab+b| + \sigma' (1+ \tfrac{1}{4} \sigma') (1-\sigma')^{-2}
.. function:: void acb_hypgeom_u_asymp(acb_t res, const acb_t a, const acb_t b, const acb_t z, long n, long prec)
Sets *res* to `U^{*}(a,b,z)` computed using *n* terms of the asymptotic series,
with a rigorous bound for the error included in the output.
We require `n \ge 0`.
.. function:: int acb_hypgeom_u_use_asymp(const acb_t z, long prec)
Heuristically determines whether the asymptotic series can be used
to evaluate `U(a,b,z)` to *prec* accurate bits (assuming that *a* and *b*
are small).
Confluent hypergeometric functions
-------------------------------------------------------------------------------
.. function:: void acb_hypgeom_u_1f1_series(acb_poly_t res, const acb_poly_t a, const acb_poly_t b, const acb_poly_t z, long len, long prec)
Computes `U(a,b,z)` as a power series truncated to length *len*,
given `a, b, z \in \mathbb{C}[[x]]`.
If `b[0] \in \mathbb{Z}`, it computes one extra derivative and removes
the singularity (it is then assumed that `b[1] \ne 0`).
As currently implemented, the output is indeterminate if `b` is nonexact
and contains an integer.
.. function:: void acb_hypgeom_u_1f1(acb_t res, const acb_t a, const acb_t b, const acb_t z, long prec)
Computes `U(a,b,z)` as a sum of two convergent hypergeometric series.
If `b \in \mathbb{Z}`, it computes
the limit value via :func:`acb_hypgeom_u_1f1_series`.
As currently implemented, the output is indeterminate if `b` is nonexact
and contains an integer.
.. function:: void acb_hypgeom_u(acb_t res, const acb_t a, const acb_t b, const acb_t z, long prec)
Computes `U(a,b,z)` using an automatic algorithm choice. The
function :func:`acb_hypgeom_u_asymp` is used
if `a` or `a-b+1` is a nonpositive integer (in which
case the asymptotic series terminates), or if *z* is sufficiently large.
Otherwise :func:`acb_hypgeom_u_1f1` is used.
.. function:: void acb_hypgeom_m_asymp(acb_t res, const acb_t a, const acb_t b, const acb_t z, int regularized, long prec)
.. function:: void acb_hypgeom_m_1f1(acb_t res, const acb_t a, const acb_t b, const acb_t z, int regularized, long prec)
.. function:: void acb_hypgeom_m(acb_t res, const acb_t a, const acb_t b, const acb_t z, int regularized, long prec)
Computes the confluent hypergeometric function
`M(a,b,z) = {}_1F_1(a,b,z)`, or
`\mathbf{M}(a,b,z) = \frac{1}{\Gamma(b)} {}_1F_1(a,b,z)` if *regularized*
is set.
The error function
-------------------------------------------------------------------------------
.. function:: void acb_hypgeom_erf_1f1a(acb_t res, const acb_t z, long prec)
.. function:: void acb_hypgeom_erf_1f1b(acb_t res, const acb_t z, long prec)
.. function:: void acb_hypgeom_erf_asymp(acb_t res, const acb_t z, long prec, long prec2)
.. function:: void acb_hypgeom_erf(acb_t res, const acb_t z, long prec)
Computes the error function respectively using
.. math ::
\operatorname{erf}(z) = \frac{2z}{\sqrt{\pi}}
{}_1F_1(\tfrac{1}{2}, \tfrac{3}{2}, -z^2)
\operatorname{erf}(z) = \frac{2z e^{-z^2}}{\sqrt{\pi}}
{}_1F_1(1, \tfrac{3}{2}, z^2)
\operatorname{erf}(z) = \frac{z}{\sqrt{z^2}}
\left(1 - \frac{e^{-z^2}}{\sqrt{\pi}}
U(\tfrac{1}{2}, \tfrac{1}{2}, z^2)\right).
and an automatic algorithm choice. The *asymp* version takes a second
precision to use for the *U* term.
.. function:: void acb_hypgeom_erfc(acb_t res, const acb_t s, const acb_t z, long prec)
Computes the complementary error function
`\operatorname{erfc}(z) = 1 - \operatorname{erf}(z)`.
This function avoids catastrophic cancellation for large positive *z*.
.. function:: void acb_hypgeom_erfi(acb_t res, const acb_t s, const acb_t z, long prec)
Computes the imaginary error function
`\operatorname{erfi}(z) = -i\operatorname{erf}(iz)`. This is a trivial wrapper
of :func:`acb_hypgeom_erf`.
Bessel functions
-------------------------------------------------------------------------------
.. function:: void acb_hypgeom_bessel_j_asymp(acb_t res, const acb_t nu, const acb_t z, long prec)
Computes the Bessel function of the first kind
via :func:`acb_hypgeom_u_asymp`.
For all complex `\nu, z`, we have
.. math ::
J_{\nu}(z) = \frac{z^{\nu}}{2^{\nu} e^{iz} \Gamma(\nu+1)}
{}_1F_1(\nu+\tfrac{1}{2}, 2\nu+1, 2iz) = A_{+} B_{+} + A_{-} B_{-}
where
.. math ::
A_{\pm} = z^{\nu} (z^2)^{-\tfrac{1}{2}-\nu} (\mp i z)^{\tfrac{1}{2}+\nu} (2 \pi)^{-1/2} = (\pm iz)^{-1/2-\nu} z^{\nu} (2 \pi)^{-1/2}
B_{\pm} = e^{\pm i z} U^{*}(\nu+\tfrac{1}{2}, 2\nu+1, \mp 2iz).
Nicer representations of the factors `A_{\pm}` can be given depending conditionally
on the parameters. If `\nu + \tfrac{1}{2} = n \in \mathbb{Z}`, we have
`A_{\pm} = (\pm i)^{n} (2 \pi z)^{-1/2}`.
And if `\operatorname{Re}(z) > 0`, we have `A_{\pm} = \exp(\mp i [(2\nu+1)/4] \pi) (2 \pi z)^{-1/2}`.
.. function:: void acb_hypgeom_bessel_j_0f1(acb_t res, const acb_t nu, const acb_t z, long prec)
Computes the Bessel function of the first kind from
.. math ::
J_{\nu}(z) = \frac{1}{\Gamma(\nu+1)} \left(\frac{z}{2}\right)^{\nu}
{}_0F_1\left(\nu+1, -\frac{z^2}{4}\right).
.. function:: void acb_hypgeom_bessel_j(acb_t res, const acb_t nu, const acb_t z, long prec)
Computes the Bessel function of the first kind `J_{\nu}(z)` using
an automatic algorithm choice.
.. function:: void acb_hypgeom_bessel_y(acb_t res, const acb_t nu, const acb_t z, long prec)
Computes the Bessel function of the second kind `Y_{\nu}(z)` from the
formula
.. math ::
Y_{\nu}(z) = \frac{\cos(\nu \pi) J_{\nu}(z) - J_{-\nu}(z)}{\sin(\nu \pi)}
unless `\nu = n` is an integer in which case the limit value
.. math ::
Y_n(z) = -\frac{2}{\pi} \left( i^n K_n(iz) +
\left[\log(iz)-\log(z)\right] J_n(z) \right)
is computed.
As currently implemented, the output is indeterminate if `\nu` is nonexact
and contains an integer.
.. function:: void acb_hypgeom_bessel_i_asymp(acb_t res, const acb_t nu, const acb_t z, long prec)
.. function:: void acb_hypgeom_bessel_i_0f1(acb_t res, const acb_t nu, const acb_t z, long prec)
.. function:: void acb_hypgeom_bessel_i(acb_t res, const acb_t nu, const acb_t z, long prec)
Computes the modified Bessel function of the first kind
`I_{\nu}(z) = z^{\nu} (iz)^{-\nu} J_{\nu}(iz)` respectively using
asymptotic series (see :func:`acb_hypgeom_bessel_j_asymp`),
the convergent series
.. math ::
I_{\nu}(z) = \frac{1}{\Gamma(\nu+1)} \left(\frac{z}{2}\right)^{\nu}
{}_0F_1\left(\nu+1, \frac{z^2}{4}\right),
or an automatic algorithm choice.
.. function:: void acb_hypgeom_bessel_k_asymp(acb_t res, const acb_t nu, const acb_t z, long prec)
Computes the modified Bessel function of the second kind via
via :func:`acb_hypgeom_u_asymp`. For all `\nu` and all `z \ne 0`, we have
.. math ::
K_{\nu}(z) = \left(\frac{2z}{\pi}\right)^{-1/2} e^{-z}
U^{*}(\nu+\tfrac{1}{2}, 2\nu+1, 2z).
.. function:: void acb_hypgeom_bessel_k_0f1_series(acb_poly_t res, const acb_poly_t nu, const acb_poly_t z, long len, long prec)
Computes the modified Bessel function of the second kind `K_{\nu}(z)`
as a power series truncated to length *len*,
given `\nu, z \in \mathbb{C}[[x]]`. Uses the formula
.. math ::
K_{\nu}(z) = \frac{1}{2} \frac{\pi}{\sin(\pi \nu)} \left[
\left(\frac{z}{2}\right)^{-\nu}
{}_0{\widetilde F}_1\left(1-\nu, \frac{z^2}{4}\right)
-
\left(\frac{z}{2}\right)^{\nu}
{}_0{\widetilde F}_1\left(1+\nu, \frac{z^2}{4}\right)
\right].
If `\nu[0] \in \mathbb{Z}`, it computes one extra derivative and removes
the singularity (it is then assumed that `\nu[1] \ne 0`).
As currently implemented, the output is indeterminate if `\nu[0]` is nonexact
and contains an integer.
.. function:: void acb_hypgeom_bessel_k_0f1(acb_t res, const acb_t nu, const acb_t z, long prec)
Computes the modified Bessel function of the second kind from
.. math ::
K_{\nu}(z) = \frac{1}{2} \left[
\left(\frac{z}{2}\right)^{-\nu}
\Gamma(\nu)
{}_0F_1\left(1-\nu, \frac{z^2}{4}\right)
-
\left(\frac{z}{2}\right)^{\nu}
\frac{\pi}{\nu \sin(\pi \nu) \Gamma(\nu)}
{}_0F_1\left(\nu+1, \frac{z^2}{4}\right)
\right]
if `\nu \notin \mathbb{Z}`. If `\nu \in \mathbb{Z}`, it computes
the limit value via :func:`acb_hypgeom_bessel_k_0f1_series`.
As currently implemented, the output is indeterminate if `\nu` is nonexact
and contains an integer.
.. function:: void acb_hypgeom_bessel_k(acb_t res, const acb_t nu, const acb_t z, long prec)
Computes the modified Bessel function of the second kind `K_{\nu}(z)` using
an automatic algorithm choice.
Incomplete gamma functions
-------------------------------------------------------------------------------
.. function:: void acb_hypgeom_gamma_upper_asymp(acb_t res, const acb_t s, const acb_t z, int modified, long prec)
.. function:: void acb_hypgeom_gamma_upper_1f1a(acb_t res, const acb_t s, const acb_t z, int modified, long prec)
.. function:: void acb_hypgeom_gamma_upper_1f1b(acb_t res, const acb_t s, const acb_t z, int modified, long prec)
.. function:: void acb_hypgeom_gamma_upper_singular(acb_t res, long s, const acb_t z, int modified, long prec)
.. function:: void acb_hypgeom_gamma_upper(acb_t res, const acb_t s, const acb_t z, int modified, long prec)
Computes the upper incomplete gamma function respectively using
.. math ::
\Gamma(s,z) = e^{-z} U(1-s,1-s,z)
\Gamma(s,z) = \Gamma(s) - \frac{z^s}{s} {}_1F_1(s, s+1, -z)
\Gamma(s,z) = \Gamma(s) - \frac{z^s e^{-z}}{s} {}_1F_1(1, s+1, z)
\Gamma(s,z) = \frac{(-1)^n}{n!} (\psi(n+1) - \log(z))
+ \frac{(-1)^n}{(n+1)!} z \, {}_2F_2(1,1,2,2+n,-z)
- z^{-n} \sum_{k=0}^{n-1} \frac{(-z)^k}{(k-n) k!},
\quad n = -s \in \mathbb{Z}_{\ge 0}
and an automatic algorithm choice. The automatic version also handles
other special input such as `z = 0` and `s = 1, 2, 3`.
The *singular* version evaluates the finite sum directly and therefore
assumes that *s* is not too large.
If *modified* is set, computes the exponential integral
`z^{-s} \Gamma(s,z) = E_{1-s}(z)` instead.
Exponential and trigonometric integrals
-------------------------------------------------------------------------------
The branch cut conventions of the following functions match Mathematica.
.. function:: void acb_hypgeom_expint(acb_t res, const acb_t s, const acb_t z, long prec)
Computes the generalized exponential integral `E_s(z)`. This is a
trivial wrapper of :func:`acb_hypgeom_gamma_upper`.
.. function:: void acb_hypgeom_ei_asymp(acb_t res, const acb_t z, long prec)
.. function:: void acb_hypgeom_ei_2f2(acb_t res, const acb_t z, long prec)
.. function:: void acb_hypgeom_ei(acb_t res, const acb_t z, long prec)
Computes the exponential integral `\operatorname{Ei}(z)`, respectively
using
.. math ::
\operatorname{Ei}(z) = -e^z U(1,1,-z) - \log(-z)
+ \frac{1}{2} \left(\log(z) - \log\left(\frac{1}{z}\right) \right)
\operatorname{Ei}(z) = z {}_2F_2(1, 1; 2, 2; z) + \gamma
+ \frac{1}{2} \left(\log(z) - \log\left(\frac{1}{z}\right) \right)
and an automatic algorithm choice.
.. function:: void acb_hypgeom_si_asymp(acb_t res, const acb_t z, long prec)
.. function:: void acb_hypgeom_si_1f2(acb_t res, const acb_t z, long prec)
.. function:: void acb_hypgeom_si(acb_t res, const acb_t z, long prec)
Computes the sine integral `\operatorname{Si}(z)`, respectively
using
.. math ::
\operatorname{Si}(z) = \frac{i}{2} \left[
e^{iz} U(1,1,-iz) - e^{-iz} U(1,1,iz) +
\log(-iz) - \log(iz) \right]
\operatorname{Si}(z) = z {}_1F_2(\tfrac{1}{2}; \tfrac{3}{2}, \tfrac{3}{2}; -\tfrac{z^2}{4})
and an automatic algorithm choice.
.. function:: void acb_hypgeom_ci_asymp(acb_t res, const acb_t z, long prec)
.. function:: void acb_hypgeom_ci_2f3(acb_t res, const acb_t z, long prec)
.. function:: void acb_hypgeom_ci(acb_t res, const acb_t z, long prec)
Computes the cosine integral `\operatorname{Ci}(z)`, respectively
using
.. math ::
\operatorname{Ci}(z) = \log(z) - \frac{1}{2} \left[
e^{iz} U(1,1,-iz) + e^{-iz} U(1,1,iz) +
\log(-iz) + \log(iz) \right]
\operatorname{Ci}(z) = -\tfrac{z^2}{4}
{}_2F_3(1, 1; 2, 2, \tfrac{3}{2}; -\tfrac{z^2}{4})
+ \log(z) + \gamma
and an automatic algorithm choice.
.. function:: void acb_hypgeom_shi(acb_t res, const acb_t z, long prec)
Computes the hyperbolic sine integral
`\operatorname{Shi}(z) = -i \operatorname{Si}(iz)`.
This is a trivial wrapper of :func:`acb_hypgeom_si`.
.. function:: void acb_hypgeom_chi_asymp(acb_t res, const acb_t z, long prec)
.. function:: void acb_hypgeom_chi_2f3(acb_t res, const acb_t z, long prec)
.. function:: void acb_hypgeom_chi(acb_t res, const acb_t z, long prec)
Computes the hyperbolic cosine integral `\operatorname{Chi}(z)`, respectively
using
.. math ::
\operatorname{Chi}(z) = -\frac{1}{2} \left[
e^{z} U(1,1,-z) + e^{-z} U(1,1,z) +
\log(-z) - \log(z) \right]
\operatorname{Chi}(z) = \tfrac{z^2}{4}
{}_2F_3(1, 1; 2, 2, \tfrac{3}{2}; \tfrac{z^2}{4})
+ \log(z) + \gamma
and an automatic algorithm choice.
.. function:: void acb_hypgeom_li(acb_t res, const acb_t z, int offset, long prec)
If *offset* is zero, computes the logarithmic integral
`\operatorname{li}(z) = \operatorname{Ei}(\log(z))`.
If *offset* is nonzero, computes the offset logarithmic integral
`\operatorname{Li}(z) = \operatorname{li}(z) - \operatorname{li}(2)`.