arb/arb_poly/inv_series.c
2016-03-10 23:01:41 +01:00

133 lines
3.6 KiB
C

/*=============================================================================
This file is part of ARB.
ARB is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
ARB is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with ARB; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
=============================================================================*/
/******************************************************************************
Copyright (C) 2012, 2013 Fredrik Johansson
******************************************************************************/
#include "arb_poly.h"
#define MULLOW(z, x, xn, y, yn, nn, prec) \
if ((xn) >= (yn)) \
_arb_poly_mullow(z, x, xn, y, yn, nn, prec); \
else \
_arb_poly_mullow(z, y, yn, x, xn, nn, prec); \
void
_arb_poly_inv_series(arb_ptr Qinv,
arb_srcptr Q, slong Qlen, slong len, slong prec)
{
Qlen = FLINT_MIN(Qlen, len);
arb_inv(Qinv, Q, prec);
if (Qlen == 1)
{
_arb_vec_zero(Qinv + 1, len - 1);
}
else if (len == 2)
{
arb_mul(Qinv + 1, Qinv, Qinv, prec);
arb_mul(Qinv + 1, Qinv + 1, Q + 1, prec);
arb_neg(Qinv + 1, Qinv + 1);
}
else
{
slong i, j, blen;
/* The basecase algorithm is faster for much larger Qlen or len than
this, but unfortunately also much less numerically stable. */
if (Qlen == 2 || len <= 8)
blen = len;
else
blen = FLINT_MIN(len, 4);
for (i = 1; i < blen; i++)
{
arb_mul(Qinv + i, Q + 1, Qinv + i - 1, prec);
for (j = 2; j < FLINT_MIN(i + 1, Qlen); j++)
arb_addmul(Qinv + i, Q + j, Qinv + i - j, prec);
if (!arb_is_one(Qinv))
arb_mul(Qinv + i, Qinv + i, Qinv, prec);
arb_neg(Qinv + i, Qinv + i);
}
if (len > blen)
{
slong Qnlen, Wlen, W2len;
arb_ptr W;
W = _arb_vec_init(len);
NEWTON_INIT(blen, len)
NEWTON_LOOP(m, n)
Qnlen = FLINT_MIN(Qlen, n);
Wlen = FLINT_MIN(Qnlen + m - 1, n);
W2len = Wlen - m;
MULLOW(W, Q, Qnlen, Qinv, m, Wlen, prec);
MULLOW(Qinv + m, Qinv, m, W + m, W2len, n - m, prec);
_arb_vec_neg(Qinv + m, Qinv + m, n - m);
NEWTON_END_LOOP
NEWTON_END
_arb_vec_clear(W, len);
}
}
}
void
arb_poly_inv_series(arb_poly_t Qinv, const arb_poly_t Q, slong n, slong prec)
{
if (n == 0)
{
arb_poly_zero(Qinv);
return;
}
if (Q->length == 0)
{
arb_poly_fit_length(Qinv, n);
_arb_vec_indeterminate(Qinv->coeffs, n);
_arb_poly_set_length(Qinv, n);
return;
}
if (Qinv == Q)
{
arb_poly_t t;
arb_poly_init(t);
arb_poly_inv_series(t, Q, n, prec);
arb_poly_swap(Qinv, t);
arb_poly_clear(t);
return;
}
arb_poly_fit_length(Qinv, n);
_arb_poly_inv_series(Qinv->coeffs, Q->coeffs, Q->length, n, prec);
_arb_poly_set_length(Qinv, n);
_arb_poly_normalise(Qinv);
}