arb/acb_hypgeom/test/t-gamma_taylor.c
2021-08-06 11:32:28 +02:00

139 lines
4.4 KiB
C

/*
Copyright (C) 2021 Fredrik Johansson
This file is part of Arb.
Arb is free software: you can redistribute it and/or modify it under
the terms of the GNU Lesser General Public License (LGPL) as published
by the Free Software Foundation; either version 2.1 of the License, or
(at your option) any later version. See <http://www.gnu.org/licenses/>.
*/
#include "acb_hypgeom.h"
int main()
{
slong iter;
flint_rand_t state;
flint_printf("gamma_taylor....");
fflush(stdout);
flint_randinit(state);
for (iter = 0; iter < 10000 * arb_test_multiplier(); iter++)
{
acb_t x, s1, s2, a, b;
slong prec, ebits, prec2;
int success, success2, alias, reciprocal;
if (n_randint(state, 10) == 0)
prec = 2 + n_randint(state, 4000);
else
prec = 2 + n_randint(state, 300);
if (n_randint(state, 10) == 0)
ebits = 100;
else
ebits = 10;
prec2 = prec + 1 + n_randint(state, 30);
acb_init(x);
acb_init(s1);
acb_init(s2);
acb_init(a);
acb_init(b);
acb_randtest(x, state, prec, ebits);
acb_randtest(s1, state, prec, 10);
acb_randtest(s2, state, prec, 10);
alias = n_randint(state, 2);
reciprocal = n_randint(state, 2);
if (alias)
{
success = acb_hypgeom_gamma_taylor(s1, x, reciprocal, prec);
}
else
{
acb_set(s1, x);
success = acb_hypgeom_gamma_taylor(s1, s1, reciprocal, prec);
}
if (success)
{
/* printf("%ld\n", iter); */
/* Compare with Stirling series algorithm. */
acb_hypgeom_gamma_stirling(s2, x, reciprocal, prec);
if (!acb_overlaps(s1, s2))
{
flint_printf("FAIL\n\n");
flint_printf("prec = %wd\n\n", prec);
flint_printf("x = "); acb_printn(x, 1000, 0); flint_printf("\n\n");
flint_printf("s1 = "); acb_printn(s1, 1000, 0); flint_printf("\n\n");
flint_printf("s2 = "); acb_printn(s2, 1000, 0); flint_printf("\n\n");
acb_sub(s1, s1, s2, prec2);
flint_printf("s1 - s2 = "); acb_printd(s1, 1000); flint_printf("\n\n");
flint_abort();
}
/* Compare with different level of precision. */
success2 = acb_hypgeom_gamma_taylor(s2, x, reciprocal, prec2);
if (success2 && !acb_overlaps(s1, s2))
{
flint_printf("FAIL (2)\n\n");
flint_printf("prec = %wd\n\n", prec);
flint_printf("x = "); acb_printn(x, 1000, 0); flint_printf("\n\n");
flint_printf("s1 = "); acb_printn(s1, 1000, 0); flint_printf("\n\n");
flint_printf("s2 = "); acb_printn(s2, 1000, 0); flint_printf("\n\n");
acb_sub(s1, s1, s2, prec2);
flint_printf("s1 - s2 = "); acb_printn(s1, 1000, 0); flint_printf("\n\n");
flint_abort();
}
acb_get_mid(a, x);
if (n_randint(state, 2))
{
arf_set_mag(arb_midref(acb_realref(b)), arb_radref(acb_realref(x)));
arf_set_mag(arb_midref(acb_imagref(b)), arb_radref(acb_imagref(x)));
if (n_randint(state, 2))
acb_neg(b, b);
if (n_randint(state, 2))
acb_conj(b, b);
acb_add(a, a, b, prec2);
}
success2 = acb_hypgeom_gamma_taylor(s2, a, reciprocal, prec2);
if (success2 && !acb_overlaps(s1, s2))
{
flint_printf("FAIL (3)\n\n");
flint_printf("prec = %wd\n\n", prec);
flint_printf("x = "); acb_printn(x, 1000, 0); flint_printf("\n\n");
flint_printf("s1 = "); acb_printn(s1, 1000, 0); flint_printf("\n\n");
flint_printf("s2 = "); acb_printn(s2, 1000, 0); flint_printf("\n\n");
acb_sub(s1, s1, s2, prec2);
flint_printf("s1 - s2 = "); acb_printn(s1, 1000, 0); flint_printf("\n\n");
flint_abort();
}
}
acb_clear(x);
acb_clear(s1);
acb_clear(s2);
acb_clear(a);
acb_clear(b);
}
flint_randclear(state);
flint_cleanup();
flint_printf("PASS\n");
return EXIT_SUCCESS;
}