arb/acb_hypgeom/gamma.c

237 lines
5.6 KiB
C

/*
Copyright (C) 2014, 2015, 2021 Fredrik Johansson
This file is part of Arb.
Arb is free software: you can redistribute it and/or modify it under
the terms of the GNU Lesser General Public License (LGPL) as published
by the Free Software Foundation; either version 2.1 of the License, or
(at your option) any later version. See <http://www.gnu.org/licenses/>.
*/
#include "acb_hypgeom.h"
#include "arb_hypgeom.h"
void
acb_hypgeom_gamma_stirling_choose_param(int * reflect, slong * r, slong * n,
const acb_t z, int use_reflect, int digamma, slong prec);
void acb_gamma_stirling_bound(mag_ptr err, const acb_t x, slong k0, slong knum, slong n);
void
acb_hypgeom_gamma_stirling_inner(acb_t s, const acb_t z, slong N, slong prec)
{
acb_t logz, t;
mag_t err;
mag_init(err);
acb_init(t);
acb_init(logz);
acb_gamma_stirling_bound(err, z, 0, 1, N);
/* t = (z-0.5)*log(z) - z + log(2*pi)/2 */
acb_log(logz, z, prec);
arb_one(acb_realref(t));
arb_mul_2exp_si(acb_realref(t), acb_realref(t), -1);
acb_sub(t, z, t, prec);
acb_mul(t, logz, t, prec);
acb_sub(t, t, z, prec);
arb_const_log_sqrt2pi(acb_realref(logz), prec);
arb_add(acb_realref(t), acb_realref(t), acb_realref(logz), prec);
/* sum part */
if (prec <= 128 || (prec <= 1024 && N <= 40) || (prec <= 2048 && N <= 16))
acb_hypgeom_gamma_stirling_sum_horner(s, z, N, prec);
else
acb_hypgeom_gamma_stirling_sum_improved(s, z, N, 0, prec);
acb_add(s, s, t, prec);
acb_add_error_mag(s, err);
acb_clear(t);
acb_clear(logz);
mag_clear(err);
}
void
acb_hypgeom_gamma_stirling(acb_t y, const acb_t x, int reciprocal, slong prec)
{
int reflect;
slong r, n, wp;
acb_t t, u, v;
double acc;
wp = prec + FLINT_BIT_COUNT(prec);
/* todo: for large x (if exact or accurate enough), increase precision */
acc = acb_rel_accuracy_bits(x);
acc = FLINT_MAX(acc, 0);
wp = FLINT_MIN(prec, acc + 20);
wp = FLINT_MAX(wp, 2);
wp = wp + FLINT_BIT_COUNT(wp);
if (acc < 3) /* try to avoid divisions blowing up */
{
if (arf_cmp_d(arb_midref(acb_realref(x)), -0.5) < 0)
{
reflect = 1;
r = 0;
}
else if (arf_cmp_si(arb_midref(acb_realref(x)), 1) < 0)
{
reflect = 0;
r = 1;
}
else
{
reflect = 0;
r = 0;
}
n = 1;
}
else
{
acb_hypgeom_gamma_stirling_choose_param(&reflect, &r, &n, x, 1, 0, wp);
}
acb_init(t);
acb_init(u);
acb_init(v);
if (reflect)
{
acb_sub_ui(t, x, 1, wp);
acb_neg(t, t);
acb_hypgeom_rising_ui_rec(u, t, r, wp);
arb_const_pi(acb_realref(v), wp);
acb_mul_arb(u, u, acb_realref(v), wp);
acb_add_ui(t, t, r, wp);
acb_hypgeom_gamma_stirling_inner(v, t, n, wp);
if (reciprocal)
{
/* rgamma(x) = gamma(1-x+r) sin(pi x) / ((rf(1-x, r) * pi) */
acb_exp(v, v, wp);
acb_sin_pi(t, x, wp);
acb_mul(v, v, t, wp);
acb_mul(y, u, v, wp);
acb_div(y, v, u, prec);
}
else
{
/* gamma(x) = (rf(1-x, r) * pi) rgamma(1-x+r) csc(pi x) */
acb_neg(v, v);
acb_exp(v, v, wp);
acb_csc_pi(t, x, wp);
acb_mul(v, v, t, wp);
acb_mul(y, v, u, prec);
}
}
else
{
acb_add_ui(t, x, r, wp);
acb_hypgeom_gamma_stirling_inner(u, t, n, wp);
if (reciprocal)
{
/* rgamma(x) = rf(x,r) rgamma(x+r) */
acb_neg(u, u);
acb_exp(u, u, prec);
acb_hypgeom_rising_ui_rec(v, x, r, wp);
acb_mul(y, v, u, prec);
}
else
{
/* gamma(x) = gamma(x+r) / rf(x,r) */
acb_exp(u, u, prec);
acb_hypgeom_rising_ui_rec(v, x, r, wp);
acb_div(y, u, v, prec);
}
}
acb_clear(t);
acb_clear(u);
acb_clear(v);
}
void
acb_hypgeom_gamma(acb_t y, const acb_t x, slong prec)
{
if (acb_is_real(x))
{
arb_hypgeom_gamma(acb_realref(y), acb_realref(x), prec);
arb_zero(acb_imagref(y));
return;
}
if (acb_hypgeom_gamma_taylor(y, x, 0, prec))
return;
acb_hypgeom_gamma_stirling(y, x, 0, prec);
}
void
acb_hypgeom_rgamma(acb_t y, const acb_t x, slong prec)
{
mag_t magz;
if (acb_is_real(x))
{
arb_hypgeom_rgamma(acb_realref(y), acb_realref(x), prec);
arb_zero(acb_imagref(y));
return;
}
if (acb_hypgeom_gamma_taylor(y, x, 1, prec))
return;
mag_init(magz);
acb_get_mag(magz, x);
if (mag_is_inf(magz))
{
acb_indeterminate(y);
}
else
{
acb_hypgeom_gamma_stirling(y, x, 1, prec);
/* Todo: improved bounds computation */
if (!acb_is_finite(y))
{
arb_t t, u, R;
arb_init(R);
arb_init(t);
arb_init(u);
arf_set_mag(arb_midref(R), magz);
arb_set_d(u, 0.5);
arb_add(u, u, R, MAG_BITS);
arb_pow(u, R, u, MAG_BITS);
arb_const_pi(t, MAG_BITS);
arb_mul(t, t, R, MAG_BITS);
arb_mul_2exp_si(t, t, -1);
arb_exp(t, t, MAG_BITS);
arb_mul(t, t, u, MAG_BITS);
arb_get_mag(magz, t);
acb_zero(y);
acb_add_error_mag(y, magz);
arb_clear(R);
arb_clear(t);
arb_clear(u);
}
}
mag_clear(magz);
}