mirror of
https://github.com/vale981/arb
synced 2025-03-05 09:21:38 -05:00
160 lines
3.7 KiB
C
160 lines
3.7 KiB
C
/*
|
|
Copyright (C) 2014 Fredrik Johansson
|
|
|
|
This file is part of Arb.
|
|
|
|
Arb is free software: you can redistribute it and/or modify it under
|
|
the terms of the GNU Lesser General Public License (LGPL) as published
|
|
by the Free Software Foundation; either version 2.1 of the License, or
|
|
(at your option) any later version. See <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include "acb_modular.h"
|
|
|
|
void
|
|
acb_modular_eisenstein(acb_ptr r, const acb_t tau, slong len, slong prec)
|
|
{
|
|
psl2z_t g;
|
|
arf_t one_minus_eps;
|
|
acb_t tau_prime, t1, t2, t3, t4, q;
|
|
slong m, n;
|
|
int real;
|
|
|
|
if (len < 1)
|
|
return;
|
|
|
|
if (!arb_is_positive(acb_imagref(tau)) || !arb_is_finite(acb_realref(tau)))
|
|
{
|
|
_acb_vec_indeterminate(r, len);
|
|
return;
|
|
}
|
|
|
|
real = arb_is_int_2exp_si(acb_realref(tau), -1);
|
|
|
|
psl2z_init(g);
|
|
arf_init(one_minus_eps);
|
|
acb_init(tau_prime);
|
|
acb_init(t1);
|
|
acb_init(t2);
|
|
acb_init(t3);
|
|
acb_init(t4);
|
|
acb_init(q);
|
|
|
|
arf_set_ui_2exp_si(one_minus_eps, 63, -6);
|
|
acb_modular_fundamental_domain_approx(tau_prime, g, tau,
|
|
one_minus_eps, prec);
|
|
|
|
acb_exp_pi_i(q, tau_prime, prec);
|
|
acb_modular_theta_const_sum(t2, t3, t4, q, prec);
|
|
|
|
/* fourth powers of the theta functions (a, b, c) */
|
|
acb_mul(t2, t2, t2, prec);
|
|
acb_mul(t2, t2, t2, prec);
|
|
acb_mul(t2, t2, q, prec);
|
|
|
|
acb_mul(t3, t3, t3, prec);
|
|
acb_mul(t3, t3, t3, prec);
|
|
|
|
acb_mul(t4, t4, t4, prec);
|
|
acb_mul(t4, t4, t4, prec);
|
|
|
|
/* c2 = pi^4 * (a^8 + b^8 + c^8) / 30 */
|
|
/* c3 = pi^6 * (b^12 + c^12 - 3a^8 * (b^4+c^4)) / 189 */
|
|
|
|
/* r = a^8 */
|
|
acb_mul(r, t2, t2, prec);
|
|
|
|
if (len > 1)
|
|
{
|
|
/* r[1] = -3 a^8 * (b^4 + c^4) */
|
|
acb_add(r + 1, t3, t4, prec);
|
|
acb_mul(r + 1, r + 1, r, prec);
|
|
acb_mul_si(r + 1, r + 1, -3, prec);
|
|
}
|
|
|
|
/* b^8 */
|
|
acb_mul(t1, t3, t3, prec);
|
|
acb_add(r, r, t1, prec);
|
|
|
|
/* b^12 */
|
|
if (len > 1)
|
|
acb_addmul(r + 1, t1, t3, prec);
|
|
|
|
/* c^8 */
|
|
acb_mul(t1, t4, t4, prec);
|
|
acb_add(r, r, t1, prec);
|
|
|
|
/* c^12 */
|
|
if (len > 1)
|
|
acb_addmul(r + 1, t1, t4, prec);
|
|
|
|
acb_const_pi(t1, prec);
|
|
acb_mul(t1, t1, t1, prec);
|
|
acb_mul(t2, t1, t1, prec);
|
|
acb_mul(r, r, t2, prec);
|
|
acb_div_ui(r, r, 30, prec);
|
|
|
|
if (len > 1)
|
|
{
|
|
acb_mul(t2, t2, t1, prec);
|
|
acb_mul(r + 1, r + 1, t2, prec);
|
|
acb_div_ui(r + 1, r + 1, 189, prec);
|
|
}
|
|
|
|
/* apply modular transformation */
|
|
if (!fmpz_is_zero(&g->c))
|
|
{
|
|
|
|
acb_mul_fmpz(t1, tau, &g->c, prec);
|
|
acb_add_fmpz(t1, t1, &g->d, prec);
|
|
acb_inv(t1, t1, prec);
|
|
acb_mul(t1, t1, t1, prec);
|
|
acb_mul(t2, t1, t1, prec);
|
|
acb_mul(r, r, t2, prec);
|
|
|
|
if (len > 1)
|
|
{
|
|
acb_mul(t2, t1, t2, prec);
|
|
acb_mul(r + 1, r + 1, t2, prec);
|
|
}
|
|
}
|
|
|
|
if (real)
|
|
{
|
|
arb_zero(acb_imagref(r));
|
|
if (len > 1)
|
|
arb_zero(acb_imagref(r + 1));
|
|
}
|
|
|
|
/* compute more coefficients using recurrence */
|
|
for (n = 4; n < len + 2; n++)
|
|
{
|
|
acb_zero(r + n - 2);
|
|
|
|
m = 2;
|
|
for (m = 2; m * 2 < n; m++)
|
|
acb_addmul(r + n - 2, r + m - 2, r + n - m - 2, prec);
|
|
|
|
acb_mul_2exp_si(r + n - 2, r + n - 2, 1);
|
|
|
|
if (n % 2 == 0)
|
|
acb_addmul(r + n - 2, r + n / 2 - 2, r + n / 2 - 2, prec);
|
|
|
|
acb_mul_ui(r + n - 2, r + n - 2, 3, prec);
|
|
acb_div_ui(r + n - 2, r + n - 2, (2 * n + 1) * (n - 3), prec);
|
|
}
|
|
|
|
/* convert c's to G's */
|
|
for (n = 0; n < len; n++)
|
|
acb_div_ui(r + n, r + n, 2 * n + 3, prec);
|
|
|
|
psl2z_clear(g);
|
|
arf_clear(one_minus_eps);
|
|
acb_clear(tau_prime);
|
|
acb_clear(t1);
|
|
acb_clear(t2);
|
|
acb_clear(t3);
|
|
acb_clear(t4);
|
|
acb_clear(q);
|
|
}
|
|
|