mirror of
https://github.com/vale981/arb
synced 2025-03-05 09:21:38 -05:00
143 lines
3.8 KiB
C
143 lines
3.8 KiB
C
/*
|
|
Copyright (C) 2017 Fredrik Johansson
|
|
|
|
This file is part of Arb.
|
|
|
|
Arb is free software: you can redistribute it and/or modify it under
|
|
the terms of the GNU Lesser General Public License (LGPL) as published
|
|
by the Free Software Foundation; either version 2.1 of the License, or
|
|
(at your option) any later version. See <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include "acb_dirichlet.h"
|
|
|
|
void
|
|
_acb_dirichlet_zeta_jet(acb_t t, const acb_t h, int deflate, slong len, slong prec)
|
|
{
|
|
acb_t a;
|
|
acb_init(a);
|
|
acb_one(a);
|
|
|
|
/* use reflection formula */
|
|
if (arf_sgn(arb_midref(acb_realref(h))) < 0)
|
|
{
|
|
/* zeta(s) = (2*pi)**s * sin(pi*s/2) / pi * gamma(1-s) * zeta(1-s) */
|
|
acb_t pi, hcopy;
|
|
acb_ptr f, s1, s2, s3, s4, u;
|
|
slong i;
|
|
|
|
acb_init(pi);
|
|
acb_init(hcopy);
|
|
f = _acb_vec_init(2);
|
|
s1 = _acb_vec_init(len);
|
|
s2 = _acb_vec_init(len);
|
|
s3 = _acb_vec_init(len);
|
|
s4 = _acb_vec_init(len);
|
|
u = _acb_vec_init(len);
|
|
acb_set(hcopy, h);
|
|
|
|
acb_const_pi(pi, prec);
|
|
|
|
/* s1 = (2*pi)**s */
|
|
acb_mul_2exp_si(pi, pi, 1);
|
|
_acb_poly_pow_cpx(s1, pi, h, len, prec);
|
|
acb_mul_2exp_si(pi, pi, -1);
|
|
|
|
/* s2 = sin(pi*s/2) / pi */
|
|
acb_set(f, h);
|
|
acb_one(f + 1);
|
|
acb_mul_2exp_si(f, f, -1);
|
|
acb_mul_2exp_si(f + 1, f + 1, -1);
|
|
_acb_poly_sin_pi_series(s2, f, 2, len, prec);
|
|
_acb_vec_scalar_div(s2, s2, len, pi, prec);
|
|
|
|
/* s3 = gamma(1-s) */
|
|
acb_sub_ui(f, hcopy, 1, prec);
|
|
acb_neg(f, f);
|
|
acb_set_si(f + 1, -1);
|
|
_acb_poly_gamma_series(s3, f, 2, len, prec);
|
|
|
|
/* s4 = zeta(1-s) */
|
|
acb_sub_ui(f, hcopy, 1, prec);
|
|
acb_neg(f, f);
|
|
_acb_poly_zeta_cpx_series(s4, f, a, 0, len, prec);
|
|
for (i = 1; i < len; i += 2)
|
|
acb_neg(s4 + i, s4 + i);
|
|
|
|
_acb_poly_mullow(u, s1, len, s2, len, len, prec);
|
|
_acb_poly_mullow(s1, s3, len, s4, len, len, prec);
|
|
_acb_poly_mullow(t, u, len, s1, len, len, prec);
|
|
|
|
/* add 1/(1-(s+t)) = 1/(1-s) + t/(1-s)^2 + ... */
|
|
if (deflate)
|
|
{
|
|
acb_sub_ui(u, hcopy, 1, prec);
|
|
acb_neg(u, u);
|
|
acb_inv(u, u, prec);
|
|
for (i = 1; i < len; i++)
|
|
acb_mul(u + i, u + i - 1, u, prec);
|
|
_acb_vec_add(t, t, u, len, prec);
|
|
}
|
|
|
|
acb_clear(pi);
|
|
acb_clear(hcopy);
|
|
_acb_vec_clear(f, 2);
|
|
_acb_vec_clear(s1, len);
|
|
_acb_vec_clear(s2, len);
|
|
_acb_vec_clear(s3, len);
|
|
_acb_vec_clear(s4, len);
|
|
_acb_vec_clear(u, len);
|
|
}
|
|
else
|
|
{
|
|
_acb_poly_zeta_cpx_series(t, h, a, deflate, len, prec);
|
|
}
|
|
|
|
acb_clear(a);
|
|
}
|
|
|
|
/* todo: should adjust precision to input accuracy */
|
|
void
|
|
acb_dirichlet_zeta_jet(acb_t res, const acb_t s, int deflate, slong len, slong prec)
|
|
{
|
|
double cutoff;
|
|
|
|
if (len == 1 && deflate == 0)
|
|
{
|
|
acb_zeta(res, s, prec);
|
|
return;
|
|
}
|
|
|
|
if (deflate == 0 && (arb_contains_zero(acb_imagref(s))
|
|
&& arb_contains_si(acb_realref(s), 1)))
|
|
{
|
|
_acb_vec_indeterminate(res, len);
|
|
return;
|
|
}
|
|
|
|
if (len > 2 || deflate != 0)
|
|
{
|
|
_acb_dirichlet_zeta_jet(res, s, deflate, len, prec);
|
|
}
|
|
else
|
|
{
|
|
cutoff = 24.0 * prec * sqrt(prec);
|
|
|
|
if (arb_is_exact(acb_realref(s)) &&
|
|
arf_cmp_2exp_si(arb_midref(acb_realref(s)), -1) == 0)
|
|
cutoff *= 2.5;
|
|
else
|
|
cutoff *= 4.0;
|
|
|
|
if (arf_cmpabs_d(arb_midref(acb_imagref(s)), cutoff) >= 0 &&
|
|
arf_cmpabs_d(arb_midref(acb_realref(s)), 10 + prec * 0.1) <= 0)
|
|
{
|
|
acb_dirichlet_zeta_jet_rs(res, s, len, prec);
|
|
}
|
|
else
|
|
{
|
|
_acb_dirichlet_zeta_jet(res, s, deflate, len, prec);
|
|
}
|
|
}
|
|
}
|
|
|