mirror of
https://github.com/vale981/arb
synced 2025-03-05 17:31:38 -05:00

This will allow us to not loose the julia session on error. See also https://github.com/wbhart/flint2/pull/243
264 lines
7.5 KiB
C
264 lines
7.5 KiB
C
/*
|
|
Copyright (C) 2016 Arb authors
|
|
|
|
This file is part of Arb.
|
|
|
|
Arb is free software: you can redistribute it and/or modify it under
|
|
the terms of the GNU Lesser General Public License (LGPL) as published
|
|
by the Free Software Foundation; either version 2.1 of the License, or
|
|
(at your option) any later version. See <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include "acb_mat.h"
|
|
|
|
static void
|
|
_acb_mat_set_fmpq_mat_fmpq_mat(acb_mat_t C,
|
|
const fmpq_mat_t rsrc, const fmpq_mat_t isrc, slong prec)
|
|
{
|
|
slong i, j;
|
|
for (i = 0; i < acb_mat_nrows(C); i++)
|
|
{
|
|
for (j = 0; j < acb_mat_ncols(C); j++)
|
|
{
|
|
arb_set_fmpq(acb_realref(acb_mat_entry(C, i, j)),
|
|
fmpq_mat_entry(rsrc, i, j), prec);
|
|
arb_set_fmpq(acb_imagref(acb_mat_entry(C, i, j)),
|
|
fmpq_mat_entry(isrc, i, j), prec);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
_acb_mat_conjugate_transpose(acb_mat_t B, const acb_mat_t A)
|
|
{
|
|
slong i, j;
|
|
acb_mat_transpose(B, A);
|
|
for (i = 0; i < acb_mat_nrows(B); i++)
|
|
for (j = 0; j < acb_mat_ncols(B); j++)
|
|
acb_conj(acb_mat_entry(B, i, j), acb_mat_entry(B, i, j));
|
|
}
|
|
|
|
static void
|
|
_fmpq_mat_sum_of_squares(fmpq_t res, const fmpq_mat_t Q)
|
|
{
|
|
slong i, j;
|
|
fmpq_zero(res);
|
|
for (i = 0; i < fmpq_mat_nrows(Q); i++)
|
|
{
|
|
for (j = 0; j < fmpq_mat_ncols(Q); j++)
|
|
{
|
|
fmpq_addmul(res, fmpq_mat_entry(Q, i, j), fmpq_mat_entry(Q, i, j));
|
|
}
|
|
}
|
|
}
|
|
|
|
int main()
|
|
{
|
|
slong iter;
|
|
flint_rand_t state;
|
|
|
|
flint_printf("frobenius_norm....");
|
|
fflush(stdout);
|
|
|
|
flint_randinit(state);
|
|
|
|
/* compare to the exact rational norm */
|
|
for (iter = 0; iter < 10000 * arb_test_multiplier(); iter++)
|
|
{
|
|
fmpq_mat_t Qr, Qi;
|
|
fmpq_t q;
|
|
acb_mat_t A;
|
|
slong n, qbits, prec;
|
|
|
|
n = n_randint(state, 8);
|
|
qbits = 1 + n_randint(state, 100);
|
|
prec = 2 + n_randint(state, 200);
|
|
|
|
fmpq_mat_init(Qr, n, n);
|
|
fmpq_mat_init(Qi, n, n);
|
|
fmpq_init(q);
|
|
|
|
acb_mat_init(A, n, n);
|
|
|
|
fmpq_mat_randtest(Qr, state, qbits);
|
|
fmpq_mat_randtest(Qi, state, qbits);
|
|
|
|
/* compute the square of the exact rational norm */
|
|
{
|
|
fmpq_t qr, qi;
|
|
fmpq_init(qr);
|
|
fmpq_init(qi);
|
|
_fmpq_mat_sum_of_squares(qr, Qr);
|
|
_fmpq_mat_sum_of_squares(qi, Qi);
|
|
fmpq_add(q, qr, qi);
|
|
fmpq_clear(qr);
|
|
fmpq_clear(qi);
|
|
}
|
|
|
|
_acb_mat_set_fmpq_mat_fmpq_mat(A, Qr, Qi, prec);
|
|
|
|
/* check that the arb interval contains the exact value */
|
|
{
|
|
arb_t a;
|
|
arb_init(a);
|
|
|
|
acb_mat_frobenius_norm(a, A, prec);
|
|
arb_mul(a, a, a, prec);
|
|
|
|
if (!arb_contains_fmpq(a, q))
|
|
{
|
|
flint_printf("FAIL (containment, iter = %wd)\n", iter);
|
|
flint_printf("n = %wd, prec = %wd\n", n, prec);
|
|
flint_printf("\n");
|
|
|
|
flint_printf("Qr = \n"); fmpq_mat_print(Qr); flint_printf("\n\n");
|
|
flint_printf("Qi = \n"); fmpq_mat_print(Qi); flint_printf("\n\n");
|
|
flint_printf("frobenius_norm(Q)^2 = \n");
|
|
fmpq_print(q); flint_printf("\n\n");
|
|
|
|
flint_printf("A = \n"); acb_mat_printd(A, 15); flint_printf("\n\n");
|
|
flint_printf("frobenius_norm(A)^2 = \n");
|
|
arb_printd(a, 15); flint_printf("\n\n");
|
|
flint_printf("frobenius_norm(A)^2 = \n");
|
|
arb_print(a); flint_printf("\n\n");
|
|
|
|
flint_abort();
|
|
}
|
|
|
|
arb_clear(a);
|
|
}
|
|
|
|
/* check that the upper bound is not less than the exact value */
|
|
{
|
|
mag_t b;
|
|
fmpq_t y;
|
|
|
|
mag_init(b);
|
|
fmpq_init(y);
|
|
|
|
acb_mat_bound_frobenius_norm(b, A);
|
|
mag_mul(b, b, b);
|
|
mag_get_fmpq(y, b);
|
|
|
|
if (fmpq_cmp(q, y) > 0)
|
|
{
|
|
flint_printf("FAIL (bound, iter = %wd)\n", iter);
|
|
flint_printf("n = %wd, prec = %wd\n", n, prec);
|
|
flint_printf("\n");
|
|
|
|
flint_printf("Qr = \n"); fmpq_mat_print(Qr); flint_printf("\n\n");
|
|
flint_printf("Qi = \n"); fmpq_mat_print(Qi); flint_printf("\n\n");
|
|
flint_printf("frobenius_norm(Q)^2 = \n");
|
|
fmpq_print(q); flint_printf("\n\n");
|
|
|
|
flint_printf("A = \n"); acb_mat_printd(A, 15); flint_printf("\n\n");
|
|
flint_printf("bound_frobenius_norm(A)^2 = \n");
|
|
mag_printd(b, 15); flint_printf("\n\n");
|
|
flint_printf("bound_frobenius_norm(A)^2 = \n");
|
|
mag_print(b); flint_printf("\n\n");
|
|
|
|
flint_abort();
|
|
}
|
|
|
|
mag_clear(b);
|
|
fmpq_clear(y);
|
|
}
|
|
|
|
fmpq_mat_clear(Qr);
|
|
fmpq_mat_clear(Qi);
|
|
fmpq_clear(q);
|
|
acb_mat_clear(A);
|
|
}
|
|
|
|
/* check trace(A^H A) = frobenius_norm(A)^2 */
|
|
for (iter = 0; iter < 10000 * arb_test_multiplier(); iter++)
|
|
{
|
|
slong m, n, prec;
|
|
acb_mat_t A, AH, AHA;
|
|
acb_t t;
|
|
|
|
prec = 2 + n_randint(state, 200);
|
|
|
|
m = n_randint(state, 10);
|
|
n = n_randint(state, 10);
|
|
|
|
acb_mat_init(A, m, n);
|
|
acb_mat_init(AH, n, m);
|
|
acb_mat_init(AHA, n, n);
|
|
acb_init(t);
|
|
|
|
acb_mat_randtest(A, state, 2 + n_randint(state, 100), 10);
|
|
_acb_mat_conjugate_transpose(AH, A);
|
|
acb_mat_mul(AHA, AH, A, prec);
|
|
acb_mat_trace(t, AHA, prec);
|
|
acb_sqrt(t, t, prec);
|
|
|
|
/* check the norm bound */
|
|
{
|
|
mag_t low, frobenius;
|
|
|
|
mag_init(low);
|
|
acb_get_mag_lower(low, t);
|
|
|
|
mag_init(frobenius);
|
|
acb_mat_bound_frobenius_norm(frobenius, A);
|
|
|
|
if (mag_cmp(low, frobenius) > 0)
|
|
{
|
|
flint_printf("FAIL (frobenius norm bound)\n", iter);
|
|
flint_printf("m = %wd, n = %wd, prec = %wd\n", m, n, prec);
|
|
flint_printf("\n");
|
|
|
|
flint_printf("A = \n"); acb_mat_printd(A, 15); flint_printf("\n\n");
|
|
|
|
flint_printf("lower(sqrt(trace(A^H A))) = \n");
|
|
mag_printd(low, 15); flint_printf("\n\n");
|
|
|
|
flint_printf("bound_frobenius_norm(A) = \n");
|
|
mag_printd(frobenius, 15); flint_printf("\n\n");
|
|
|
|
flint_abort();
|
|
}
|
|
|
|
mag_clear(low);
|
|
mag_clear(frobenius);
|
|
}
|
|
|
|
/* check the norm interval */
|
|
{
|
|
arb_t frobenius;
|
|
|
|
arb_init(frobenius);
|
|
acb_mat_frobenius_norm(frobenius, A, prec);
|
|
|
|
if (!arb_overlaps(acb_realref(t), frobenius))
|
|
{
|
|
flint_printf("FAIL (frobenius norm overlap)\n", iter);
|
|
flint_printf("m = %wd, n = %wd, prec = %wd\n", m, n, prec);
|
|
flint_printf("\n");
|
|
|
|
flint_printf("A = \n"); acb_mat_printd(A, 15); flint_printf("\n\n");
|
|
|
|
flint_printf("sqrt(trace(A^H A)) = \n");
|
|
acb_printd(t, 15); flint_printf("\n\n");
|
|
|
|
flint_printf("frobenius_norm(A) = \n");
|
|
arb_printd(frobenius, 15); flint_printf("\n\n");
|
|
|
|
flint_abort();
|
|
}
|
|
|
|
arb_clear(frobenius);
|
|
}
|
|
|
|
acb_mat_clear(A);
|
|
acb_mat_clear(AH);
|
|
acb_mat_clear(AHA);
|
|
acb_clear(t);
|
|
}
|
|
|
|
flint_randclear(state);
|
|
flint_cleanup();
|
|
flint_printf("PASS\n");
|
|
return EXIT_SUCCESS;
|
|
}
|