arb/gamma/stirling_eval_series_fmpcb.c
2013-03-04 00:55:36 +01:00

159 lines
4.4 KiB
C

/*=============================================================================
This file is part of ARB.
ARB is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
ARB is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with ARB; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
=============================================================================*/
/******************************************************************************
Copyright (C) 2012 Fredrik Johansson
******************************************************************************/
#include <math.h>
#include "gamma.h"
#include "bernoulli.h"
/*
B_(2n) / (2n (2n-1)) / |z|^(2n-1) * (1/cos(0.5*arg(z))^(2n))
*/
void
gamma_stirling_bound_remainder_fmpcb(fmpr_t err, const fmpcb_t z, long n)
{
fmpr_t t;
fmprb_t b;
if (fmprb_contains_zero(fmpcb_imagref(z)) &&
fmprb_contains_nonpositive(fmpcb_realref(z)))
{
fmpr_pos_inf(err);
return;
}
/* bound 1 / |z|^(2n-1) */
fmpcb_get_abs_lbound_fmpr(err, z, FMPRB_RAD_PREC);
if (fmpr_is_zero(err))
{
fmpr_pos_inf(err);
return;
}
fmpr_ui_div(err, 1, err, FMPRB_RAD_PREC, FMPR_RND_UP);
fmpr_pow_sloppy_ui(err, err, 2 * n - 1, FMPRB_RAD_PREC, FMPR_RND_UP);
/* bound coefficient */
fmprb_init(b);
fmpr_init(t);
gamma_stirling_coeff(b, n, 0, FMPRB_RAD_PREC);
fmprb_get_abs_ubound_fmpr(t, b, FMPRB_RAD_PREC);
fmpr_mul(err, err, t, FMPRB_RAD_PREC, FMPR_RND_UP);
/* bound 1/cos(0.5*arg(z))^(2n) */
fmpcb_arg(b, z, FMPRB_RAD_PREC);
fmprb_mul_2exp_si(b, b, -1);
fmprb_cos(b, b, FMPRB_RAD_PREC);
fmprb_get_abs_lbound_fmpr(t, b, FMPRB_RAD_PREC);
fmpr_ui_div(t, 1, t, FMPRB_RAD_PREC, FMPR_RND_UP);
fmpr_pow_sloppy_ui(t, t, 2 * n, FMPRB_RAD_PREC, FMPR_RND_UP);
fmpr_mul(err, err, t, FMPRB_RAD_PREC, FMPR_RND_UP);
fmprb_clear(b);
fmpr_clear(t);
}
void
gamma_stirling_eval_series_fmpcb(fmpcb_t s, const fmpcb_t z, long nterms, int digamma, long prec)
{
fmpcb_t t, u, w, v;
fmprb_t b;
fmpr_t err;
long k, term_prec;
double z_mag, term_mag;
fmpcb_init(t);
fmpcb_init(u);
fmpcb_init(w);
fmpcb_init(v);
fmprb_init(b);
fmpcb_log(w, z, prec);
nterms = FLINT_MAX(nterms, 1);
fmpcb_zero(s);
if (nterms > 1)
{
fmpcb_inv(t, z, prec);
fmpcb_mul(u, t, t, prec);
z_mag = fmpr_get_d(fmprb_midref(fmpcb_realref(w)), FMPR_RND_UP) * 1.44269504088896;
for (k = nterms - 1; k >= 1; k--)
{
term_mag = bernoulli_bound_2exp_si(2 * k);
term_mag -= (2 * k - 1) * z_mag;
term_prec = prec + term_mag;
term_prec = FLINT_MIN(term_prec, prec);
term_prec = FLINT_MAX(term_prec, 10);
gamma_stirling_coeff(b, k, 0, term_prec);
if (prec > 2000)
{
fmpcb_set_round(v, u, term_prec);
fmpcb_mul(s, s, v, term_prec);
}
else
{
fmpcb_mul(s, s, u, term_prec);
}
fmprb_add(fmpcb_realref(s), fmpcb_realref(s), b, term_prec);
}
fmpcb_mul(s, s, t, prec);
}
/* remainder bound */
fmpr_init(err);
gamma_stirling_bound_remainder_fmpcb(err, z, nterms);
fmprb_add_error_fmpr(fmpcb_realref(s), err);
fmprb_add_error_fmpr(fmpcb_imagref(s), err);
fmpr_clear(err);
/* (z-0.5)*log(z) - z + log(2*pi)/2 */
fmprb_one(b);
fmprb_mul_2exp_si(b, b, -1);
fmprb_set(fmpcb_imagref(t), fmpcb_imagref(z));
fmprb_sub(fmpcb_realref(t), fmpcb_realref(z), b, prec);
fmpcb_mul(t, w, t, prec);
fmpcb_add(s, s, t, prec);
fmpcb_sub(s, s, z, prec);
fmprb_const_log_sqrt2pi(b, prec);
fmprb_add(fmpcb_realref(s), fmpcb_realref(s), b, prec);
fmpcb_clear(t);
fmpcb_clear(u);
fmpcb_clear(w);
fmpcb_clear(v);
fmprb_clear(b);
}