arb/doc/source/fmprb_poly.rst
2013-01-25 18:51:44 +01:00

368 lines
17 KiB
ReStructuredText

**fmprb_poly.h** -- polynomials over the real numbers
===============================================================================
An *fmprb_poly_t* represents a polynomial over the real numbers,
implemented as an array of coefficients of type *fmprb_struct*.
Most functions are provided in two versions: an underscore method which
operates directly on pre-allocated arrays of coefficients and generally
has some restrictions (such as requiring the lengths to be nonzero
and not supporting aliasing of the input and output arrays),
and a non-underscore method which performs automatic memory
management and handles degenerate cases.
Types, macros and constants
-------------------------------------------------------------------------------
.. type:: fmprb_poly_struct
.. type:: fmprb_poly_t
Contains a pointer to an array of coefficients (coeffs), the used
length (length), and the allocated size of the array (alloc).
An *fmprb_poly_t* is defined as an array of length one of type
*fmprb_poly_struct*, permitting an *fmprb_poly_t* to
be passed by reference.
Memory management
-------------------------------------------------------------------------------
.. function:: void fmprb_poly_init(fmprb_poly_t poly)
Initializes the polynomial for use, setting it to the zero polynomial.
.. function:: void fmprb_poly_clear(fmprb_poly_t poly)
Clears the polynomial, deallocating all coefficients and the
coefficient array.
.. function:: void fmprb_poly_fit_length(fmprb_poly_t poly, long len)
Makes sures that the coefficient array of the polynomial contains at
least *len* initialized coefficients.
.. function:: void _fmprb_poly_set_length(fmprb_poly_t poly, long len)
Directly changes the length of the polynomial, without allocating or
deallocating coefficients. The value shold not exceed the allocation length.
.. function:: void _fmprb_poly_normalise(fmprb_poly_t poly)
Strips any trailing coefficients which are identical to zero.
.. function:: void fmprb_poly_zero(fmprb_poly_t poly)
.. function:: void fmprb_poly_one(fmprb_poly_t poly)
Sets *poly* to the constant 0 respectively 1.
Conversions
-------------------------------------------------------------------------------
.. function:: void fmprb_poly_set_fmpz_poly(fmprb_poly_t poly, const fmpz_poly_t src, long prec)
.. function:: void fmprb_poly_set_fmpq_poly(fmprb_poly_t poly, const fmpq_poly_t src, long prec)
.. function:: void fmprb_poly_set_si(fmprb_poly_t poly, long src)
Sets *poly* to *src*, rounding the coefficients to *prec* bits.
Input and output
-------------------------------------------------------------------------------
.. function:: void fmprb_poly_printd(const fmprb_poly_t poly, long digits)
Prints the polynomial as an array of coefficients, printing each
coefficient using *fmprb_printd*.
Random generation
-------------------------------------------------------------------------------
.. function:: void fmprb_poly_randtest(fmprb_poly_t poly, flint_rand_t state, long len, long prec, long mag_bits)
Creates a random polynomial with length at most *len*.
Comparisons
-------------------------------------------------------------------------------
.. function:: int fmprb_poly_contains_fmpq_poly(const fmprb_poly_t poly1, const fmpq_poly_t poly2)
Returns nonzero iff *poly1* contains *poly2*.
.. function:: int fmprb_poly_equal(const fmprb_t A, const fmprb_t B)
Returns nonzero iff *A* and *B* are equal as polynomial balls, i.e. all
coefficients have equal midpoint and radius.
.. function:: int _fmprb_poly_overlaps(const fmprb_struct * poly1, long len1, const fmprb_struct * poly2, long len2)
.. function:: int fmprb_poly_overlaps(const fmprb_poly_t poly1, const fmprb_poly_t poly2)
Returns nonzero iff *poly1* overlaps with *poly2*. The underscore
function requires that *len1* ist at least as large as *len2*.
Arithmetic
-------------------------------------------------------------------------------
.. function:: void _fmprb_poly_add(fmprb_struct * C, const fmprb_struct * A, long lenA, const fmprb_struct * B, long lenB, long prec)
Sets *{C, max(lenA, lenB)}* to the sum of *{A, lenA}* and *{B, lenB}*.
Allows aliasing of the input and output operands.
.. function:: void fmprb_poly_add(fmprb_poly_t C, const fmprb_poly_t A, const fmprb_poly_t B, long prec)
Sets *C* to the sum of *A* and *B*.
.. function:: void _fmprb_poly_mullow(fmprb_struct * C, const fmprb_struct * A, long lenA, const fmprb_struct * B, long lenB, long n, long prec)
Sets *{C, n}* to the product of *{A, lenA}* and *{B, lenB}*, truncated to
length *n*. The output is not allowed to be aliased with either of the
inputs. We require `\mathrm{lenA} \ge \mathrm{lenB} > 0`,
`n > 0`, `\mathrm{lenA} + \mathrm{lenB} - 1 \ge n`.
As currently implemented, this function puts each input polynomial on
a common exponent, truncates to prec bits, and multiplies exactly over
the integers. The output error is computed by cross-multiplying the
max norms.
.. function:: void fmprb_poly_mullow(fmprb_poly_t C, const fmprb_poly_t A,
const fmprb_poly_t B, long n, long prec)
Sets *C* to the product of *A* and *B*, truncated to length *n*.
.. function:: void _fmprb_poly_mul(fmprb_struct * C, const fmprb_struct * A, long lenA, const fmprb_struct * B, long lenB, long prec)
Sets *{C, n}* to the product of *{A, lenA}* and *{B, lenB}*, truncated to
length *n*. The output is not allowed to be aliased with either of the
inputs. We require $\mathrm{lenA} \ge \mathrm{lenB} > 0$, $n > 0$.
This function currently calls *_fmprb_poly_mullow*.
.. function:: void fmprb_poly_mul(fmprb_poly_t C, const fmprb_poly_t A, const fmprb_poly_t B, long prec)
Sets *C* to the product of *A* and *B*.
.. function:: void _fmprb_poly_inv_series(fmprb_struct * Qinv, const fmprb_struct * Q, long len, long prec)
Sets *{Qinv, len}* to the power series inverse of *{Q, len}*. Uses Newton iteration.
.. function:: void fmprb_poly_inv_series(fmprb_poly_t Qinv, const fmprb_poly_t Q, long n, long prec)
Sets *Qinv* to the power series inverse of *Q*.
.. function:: void _fmprb_poly_div(fmprb_struct * Q, const fmprb_struct * A, long lenA, const fmprb_struct * B, long lenB, long prec)
.. function:: void _fmprb_poly_rem(fmprb_struct * R, const fmprb_struct * A, long lenA, const fmprb_struct * B, long lenB, long prec)
.. function:: void _fmprb_poly_divrem(fmprb_struct * Q, fmprb_struct * R, const fmprb_struct * A, long lenA, const fmprb_struct * B, long lenB, long prec)
.. function:: void fmprb_poly_divrem(fmprb_poly_t Q, fmprb_poly_t R, const fmprb_poly_t A, const fmprb_poly_t B, long prec)
Performs polynomial division with remainder, computing a quotient `Q` and
a remainder `R` such that `A = BQ + R`. The leading coefficient of `B` must
not contain zero. The implementation reverses the inputs and performs
power series division.
.. function:: void _fmprb_poly_div_root(fmprb_struct * Q, fmprb_t R, const fmprb_struct * A, long len, const fmprb_t c, long prec)
Divides `A` by the polynomial `x - c`, computing the quotient `Q` as well
as the remainder `R = f(c)`.
Product trees
-------------------------------------------------------------------------------
.. function:: void _fmprb_poly_product_roots(fmprb_struct * poly, const fmprb_struct * xs, long n, long prec)
.. function:: void fmprb_poly_product_roots(fmprb_poly_t poly, fmprb_struct * xs, long n, long prec)
Generates the polynomial `(x-x_0)(x-x_1)\cdots(x-x_{n-1})`.
.. function:: fmprb_struct ** _fmprb_poly_tree_alloc(long len)
Returns an initialized data structured capable of representing a
remainder tree (product tree) of *len* roots.
.. function:: void _fmprb_poly_tree_free(fmprb_struct ** tree, long len)
Deallocates a tree structure as allocated using *_fmprb_poly_tree_alloc*.
.. function:: void _fmprb_poly_tree_build(fmprb_struct ** tree, const fmprb_struct * roots, long len, long prec)
Constructs a product tree from a given array of *len* roots. The tree
structure must be pre-allocated to the specified length using
*_fmprb_poly_tree_alloc*.
Composition
-------------------------------------------------------------------------------
.. function:: void _fmprb_poly_compose_horner(fmprb_struct * res, const fmprb_struct * poly1, long len1, const fmprb_struct * poly2, long len2, long prec)
.. function:: void fmprb_poly_compose_horner(fmprb_poly_t res, const fmprb_poly_t poly1, const fmprb_poly_t poly2, long prec)
.. function:: void _fmprb_poly_compose_divconquer(fmprb_struct * res, const fmprb_struct * poly1, long len1, const fmprb_struct * poly2, long len2, long prec)
.. function:: void fmprb_poly_compose_divconquer(fmprb_poly_t res, const fmprb_poly_t poly1, const fmprb_poly_t poly2, long prec)
.. function:: void _fmprb_poly_compose(fmprb_struct * res, const fmprb_struct * poly1, long len1, const fmprb_struct * poly2, long len2, long prec)
.. function:: void fmprb_poly_compose(fmprb_poly_t res, const fmprb_poly_t poly1, const fmprb_poly_t poly2, long prec)
Sets *res* to the composition `h(x) = f(g(x))` where `f` is given by
*poly1* and `g` is given by *poly2*, respectively using Horner's rule,
divide-and-conquer, and an automatic choice between the two algorithms.
The underscore methods do not support aliasing of the output
with either input polynomial.
.. function:: void _fmprb_poly_compose_series_horner(fmprb_struct * res, const fmprb_struct * poly1, long len1, const fmprb_struct * poly2, long len2, long n, long prec)
.. function:: void fmprb_poly_compose_series_horner(fmprb_poly_t res, const fmprb_poly_t poly1, const fmprb_poly_t poly2, long n, long prec)
.. function:: void _fmprb_poly_compose_series_brent_kung(fmprb_struct * res, const fmprb_struct * poly1, long len1, const fmprb_struct * poly2, long len2, long n, long prec)
.. function:: void fmprb_poly_compose_series_brent_kung(fmprb_poly_t res, const fmprb_poly_t poly1, const fmprb_poly_t poly2, long n, long prec)
.. function:: void _fmprb_poly_compose_series(fmprb_struct * res, const fmprb_struct * poly1, long len1, const fmprb_struct * poly2, long len2, long n, long prec)
.. function:: void fmprb_poly_compose_series(fmprb_poly_t res, const fmprb_poly_t poly1, const fmprb_poly_t poly2, long n, long prec)
Sets *res* to the power series composition `h(x) = f(g(x))` truncated
to order `O(x^n)` where `f` is given by *poly1* and `g` is given by *poly2*,
respectively using Horner's rule, the Brent-Kung baby step-giant step
algorithm, and an automatic choice between the two algorithms.
We require that the constant term in `g(x)` is exactly zero.
The underscore methods do not support aliasing of the output
with either input polynomial.
Evaluation and interpolation
-------------------------------------------------------------------------------
.. function:: void _fmprb_poly_evaluate(fmprb_t res, const fmprb_struct * f, long len, const fmprb_t a, long prec)
.. function:: void fmprb_poly_evaluate(fmprb_t res, const fmprb_poly_t f, const fmprb_t a, long prec)
Sets res to `f(a)`, evaluated using Horner's rule.
.. function:: void _fmprb_poly_evaluate_vec_iter(fmprb_struct * ys, const fmprb_struct * poly, long plen, const fmprb_struct * xs, long n, long prec)
.. function:: void fmprb_poly_evaluate_vec_iter(fmprb_struct * ys, const fmprb_poly_t poly, const fmprb_struct * xs, long n, long prec)
Evaluates the polynomial simultaneously at *n* given points, calling
*_fmprb_poly_evaluate* repeatedly.
.. function:: void _fmprb_poly_evaluate_vec_fast_precomp(fmprb_struct * vs, const fmprb_struct * poly, long plen, fmprb_struct ** tree, long len, long prec)
.. function:: void _fmprb_poly_evaluate_vec_fast(fmprb_struct * ys, const fmprb_struct * poly, long plen, const fmprb_struct * xs, long n, long prec)
.. function:: void fmprb_poly_evaluate_vec_fast(fmprb_struct * ys, const fmprb_poly_t poly, const fmprb_struct * xs, long n, long prec)
Evaluates the polynomial simultaneously at *n* given points, using
fast multipoint evaluation.
.. function:: void _fmprb_poly_interpolate_newton(fmprb_struct * poly, const fmprb_struct * xs, const fmprb_struct * ys, long n, long prec)
.. function:: void fmprb_poly_interpolate_newton(fmprb_poly_t poly, const fmprb_struct * xs, const fmprb_struct * ys, long n, long prec)
Recovers the unique polynomial of length at most *n* that interpolates
the given *x* and *y* values. This implementation first interpolates in the
Newton basis and then converts back to the monomial basis.
.. function:: void _fmprb_poly_interpolate_barycentric(fmprb_struct * poly, const fmprb_struct * xs, const fmprb_struct * ys, long n, long prec)
.. function:: void fmprb_poly_interpolate_barycentric(fmprb_poly_t poly, const fmprb_struct * xs, const fmprb_struct * ys, long n, long prec)
Recovers the unique polynomial of length at most *n* that interpolates
the given *x* and *y* values. This implementation uses the barycentric
form of Lagrange interpolation.
.. function:: void _fmprb_poly_interpolation_weights(fmprb_struct * w, fmprb_struct ** tree, long len, long prec)
.. function:: void _fmprb_poly_interpolate_fast_precomp(fmprb_struct * poly, const fmprb_struct * ys, fmprb_struct ** tree, const fmprb_struct * weights, long len, long prec)
.. function:: void _fmprb_poly_interpolate_fast(fmprb_struct * poly, const fmprb_struct * xs, const fmprb_struct * ys, long len, long prec)
.. function:: void fmprb_poly_interpolate_fast(fmprb_poly_t poly, const fmprb_struct * xs, const fmprb_struct * ys, long n, long prec)
Recovers the unique polynomial of length at most *n* that interpolates
the given *x* and *y* values, using fast Lagrange interpolation.
The precomp function takes a precomputed product tree over the
*x* values and a vector of interpolation weights as additional inputs.
Differentiation
-------------------------------------------------------------------------------
.. function:: void _fmprb_poly_derivative(fmprb_struct * res, const fmprb_struct * poly, long len, long prec)
Sets *{res, len - 1}* to the derivative of *{poly, len}*.
Allows aliasing of the input and output.
.. function:: void fmprb_poly_derivative(fmprb_poly_t res, const fmprb_poly_t poly, long prec)
Sets *res* to the derivative of *poly*.
.. function:: void _fmprb_poly_integral(fmprb_struct * res, const fmprb_struct * poly, long len, long prec)
Sets *{res, len}* to the integral of *{poly, len - 1}*.
Allows aliasing of the input and output.
.. function:: void fmprb_poly_integral(fmprb_poly_t res, const fmprb_poly_t poly, long prec)
Sets *res* to the integral of *poly*.
Special functions
-------------------------------------------------------------------------------
.. function:: void _fmprb_poly_log_series(fmprb_struct * f, fmprb_struct * h, long n, long prec)
.. function:: void fmprb_poly_log_series(fmprb_poly_t f, const fmprb_poly_t h, long n, long prec)
Sets `f` to the power series logarithm of `h`, truncated to length `n`.
Uses the formula `\log f = \int f' / f`, adding the logarithm of the
constant term in `h` as the constant of integration.
The underscore method does not support aliasing of the input and output
arrays.
.. function:: void _fmprb_poly_exp_series_basecase(fmprb_struct * f, const fmprb_struct * h, long hlen, long n, long prec)
.. function:: void fmprb_poly_exp_series_basecase(fmprb_poly_t f, const fmprb_poly_t h, long n, long prec)
.. function:: void _fmprb_poly_exp_series(fmprb_struct * f, const fmprb_struct * h, long hlen, long n, long prec)
.. function:: void fmprb_poly_exp_series(fmprb_poly_t f, const fmprb_poly_t h, long n, long prec)
Sets `f` to the power series exponential of `h`, truncated to length `n`.
The basecase version uses a simple recurrence for the coefficients,
requiring `O(nm)` operations where `m` is the length of `h`.
The main implementation uses Newton iteration, starting from a small
number of terms given by the basecase algorithm. The complexity
is `O(M(n))`. Redundant operations in the Newton iteration are
avoided by using the scheme described in [HZ2004]_.
The underscore methods support aliasing and allow the input to be
shorter than the output, but require the lengths to be nonzero.
.. function:: void fmprb_poly_log_gamma_series(fmprb_poly_t f, long n, long prec)
Sets `f` to the series expansion of `\log(\Gamma(1-x))`, truncated to
length `n`.
.. function:: void _fmprb_poly_rfac_series_ui(fmprb_struct * res, const fmprb_struct * f, long flen, ulong r, long trunc, long prec)
.. function:: void fmprb_poly_rfac_series_ui(fmprb_poly_t res, const fmprb_poly_t f, ulong r, long trunc, long prec)
Sets *res* to the rising factorial `(f) (f+1) (f+2) \cdots (f+r-1)`, truncated
to length *trunc*. The underscore method assumes that *flen*, *r* and *trunc*
are at least 1, and does not support aliasing. Uses binary splitting.